Moser’s Quadratic, Symplectic Map View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Arnd Bäcker, James D. Meiss

ABSTRACT

In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori. More... »

PAGES

654-664

References to SciGraph publications

  • 1989-01. Integrable mappings of the standard type in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2015-02. Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1976-02. A two-dimensional mapping with a strange attractor in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-11. KAM-tori near an analytic elliptic fixed point in REGULAR AND CHAOTIC DYNAMICS
  • 2001-04. The role of chaotic resonances in the Solar System in NATURE
  • 2016-04. The dynamical structure of the MEO region: long-term stability, chaos, and transport in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1979-06. Shift automorphisms in the Hénon mapping in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1994-05. On quadratic symplectic mappings in MATHEMATISCHE ZEITSCHRIFT
  • 1971-11. On the number of isolating integrals in systems with three degrees of freedom in ASTROPHYSICS AND SPACE SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1560354718060023

    DOI

    http://dx.doi.org/10.1134/s1560354718060023

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110564764


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
              "id": "https://www.grid.ac/institutes/grid.419560.f", 
              "name": [
                "Technische Universit\u00e4t Dresden, Institut f\u00fcr Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany", 
                "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse 38, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "B\u00e4cker", 
            "givenName": "Arnd", 
            "id": "sg:person.01130750013.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Colorado Boulder", 
              "id": "https://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Applied Mathematics, University of Colorado, 80309 0526, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meiss", 
            "givenName": "James D.", 
            "id": "sg:person.0643670514.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01221362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000754556", 
              "https://doi.org/10.1007/bf01221362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01221362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000754556", 
              "https://doi.org/10.1007/bf01221362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.5267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001150345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1560354713060154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004754839", 
              "https://doi.org/10.1134/s1560354713060154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00649198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008466259", 
              "https://doi.org/10.1007/bf00649198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00649198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008466259", 
              "https://doi.org/10.1007/bf00649198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1387-6473(01)00153-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008468305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-014-9591-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010547136", 
              "https://doi.org/10.1007/s10569-014-9591-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4884495", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011058167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/21/1/r01", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011356571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01078586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014945439", 
              "https://doi.org/10.1007/bf01078586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01078586", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014945439", 
              "https://doi.org/10.1007/bf01078586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1406630111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015801588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jdeq.1996.0165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016363735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10569-015-9665-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017807889", 
              "https://doi.org/10.1007/s10569-015-9665-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(93)90027-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022198354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0375-9601(93)90027-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022198354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4882163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022496382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jde.2010.12.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025378236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.104101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028422068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.104101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028422068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(92)90024-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031809302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(92)90024-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031809302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.89.022902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037328466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.89.022902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037328466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038318754", 
              "https://doi.org/10.1007/bf01608556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038318754", 
              "https://doi.org/10.1007/bf01608556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4954024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050389137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02572331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050789881", 
              "https://doi.org/10.1007/bf02572331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02572331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050789881", 
              "https://doi.org/10.1007/bf02572331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35071000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051689704", 
              "https://doi.org/10.1038/35071000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35071000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051689704", 
              "https://doi.org/10.1038/35071000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100356a014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055666704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.459840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058037851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.527544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058104563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/115978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058454557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/253513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059348313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stt1640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059912667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.25.1257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060469913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.25.1257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060469913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.41.4143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060481261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.41.4143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060481261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcse.2011.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061398463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/8955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099009467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.98.022214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106258788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.98.022214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106258788"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "In 1994, J\u00fcrgen Moser generalized H\u00e9non\u2019s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser\u2019s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser\u2019s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled H\u00e9non maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1560354718060023", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136573", 
            "issn": [
              "1468-4845", 
              "1560-3547"
            ], 
            "name": "Regular and Chaotic Dynamics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Moser\u2019s Quadratic, Symplectic Map", 
        "pagination": "654-664", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "99a16c1f03186efe21f13b191c8275d3348f215b14d7d355dc87810667429cd2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1560354718060023"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110564764"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1560354718060023", 
          "https://app.dimensions.ai/details/publication/pub.1110564764"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12005_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1560354718060023"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1560354718060023 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na0e87a82d7404eda895699b33cd126e6
    4 schema:citation sg:pub.10.1007/bf00649198
    5 sg:pub.10.1007/bf01078586
    6 sg:pub.10.1007/bf01221362
    7 sg:pub.10.1007/bf01608556
    8 sg:pub.10.1007/bf02572331
    9 sg:pub.10.1007/s10569-014-9591-2
    10 sg:pub.10.1007/s10569-015-9665-9
    11 sg:pub.10.1038/35071000
    12 sg:pub.10.1134/s1560354713060154
    13 https://doi.org/10.1006/jdeq.1996.0165
    14 https://doi.org/10.1016/0167-2789(92)90024-h
    15 https://doi.org/10.1016/0375-9601(93)90027-w
    16 https://doi.org/10.1016/j.jde.2010.12.023
    17 https://doi.org/10.1016/s1387-6473(01)00153-1
    18 https://doi.org/10.1021/j100356a014
    19 https://doi.org/10.1063/1.459840
    20 https://doi.org/10.1063/1.4882163
    21 https://doi.org/10.1063/1.4884495
    22 https://doi.org/10.1063/1.4954024
    23 https://doi.org/10.1063/1.527544
    24 https://doi.org/10.1073/pnas.1406630111
    25 https://doi.org/10.1086/115978
    26 https://doi.org/10.1088/0951-7715/21/1/r01
    27 https://doi.org/10.1090/qam/253513
    28 https://doi.org/10.1093/mnras/stt1640
    29 https://doi.org/10.1103/physreva.25.1257
    30 https://doi.org/10.1103/physreva.41.4143
    31 https://doi.org/10.1103/physreve.89.022902
    32 https://doi.org/10.1103/physreve.98.022214
    33 https://doi.org/10.1103/physrevlett.70.2975
    34 https://doi.org/10.1103/physrevlett.85.558
    35 https://doi.org/10.1103/physrevlett.97.104101
    36 https://doi.org/10.1109/mcse.2011.35
    37 https://doi.org/10.1142/8955
    38 https://doi.org/10.2514/3.5267
    39 schema:datePublished 2018-11
    40 schema:datePublishedReg 2018-11-01
    41 schema:description In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N755df706336f47948491a2e2832a131f
    46 Nb2d2d8eb1d954bd8a7e3ca860e61b4ae
    47 sg:journal.1136573
    48 schema:name Moser’s Quadratic, Symplectic Map
    49 schema:pagination 654-664
    50 schema:productId Na0dbf1b2a0134fdfa561934b36794d06
    51 Na93d2dc45c9e4fc2b26650ca579225a4
    52 Nd7fd898ef214478d9d32fea79e058f6e
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110564764
    54 https://doi.org/10.1134/s1560354718060023
    55 schema:sdDatePublished 2019-04-11T08:22
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N7bedba3d61b34f63aa90992bede5b840
    58 schema:url https://link.springer.com/10.1134%2FS1560354718060023
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N5cb4f83ed9d543f29ccef655272240dc rdf:first sg:person.0643670514.20
    63 rdf:rest rdf:nil
    64 N755df706336f47948491a2e2832a131f schema:volumeNumber 23
    65 rdf:type schema:PublicationVolume
    66 N7bedba3d61b34f63aa90992bede5b840 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Na0dbf1b2a0134fdfa561934b36794d06 schema:name readcube_id
    69 schema:value 99a16c1f03186efe21f13b191c8275d3348f215b14d7d355dc87810667429cd2
    70 rdf:type schema:PropertyValue
    71 Na0e87a82d7404eda895699b33cd126e6 rdf:first sg:person.01130750013.14
    72 rdf:rest N5cb4f83ed9d543f29ccef655272240dc
    73 Na93d2dc45c9e4fc2b26650ca579225a4 schema:name doi
    74 schema:value 10.1134/s1560354718060023
    75 rdf:type schema:PropertyValue
    76 Nb2d2d8eb1d954bd8a7e3ca860e61b4ae schema:issueNumber 6
    77 rdf:type schema:PublicationIssue
    78 Nd7fd898ef214478d9d32fea79e058f6e schema:name dimensions_id
    79 schema:value pub.1110564764
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1136573 schema:issn 1468-4845
    88 1560-3547
    89 schema:name Regular and Chaotic Dynamics
    90 rdf:type schema:Periodical
    91 sg:person.01130750013.14 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
    92 schema:familyName Bäcker
    93 schema:givenName Arnd
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14
    95 rdf:type schema:Person
    96 sg:person.0643670514.20 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
    97 schema:familyName Meiss
    98 schema:givenName James D.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20
    100 rdf:type schema:Person
    101 sg:pub.10.1007/bf00649198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466259
    102 https://doi.org/10.1007/bf00649198
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/bf01078586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014945439
    105 https://doi.org/10.1007/bf01078586
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/bf01221362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754556
    108 https://doi.org/10.1007/bf01221362
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01608556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
    111 https://doi.org/10.1007/bf01608556
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf02572331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050789881
    114 https://doi.org/10.1007/bf02572331
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s10569-014-9591-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010547136
    117 https://doi.org/10.1007/s10569-014-9591-2
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s10569-015-9665-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017807889
    120 https://doi.org/10.1007/s10569-015-9665-9
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1038/35071000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051689704
    123 https://doi.org/10.1038/35071000
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1134/s1560354713060154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004754839
    126 https://doi.org/10.1134/s1560354713060154
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1006/jdeq.1996.0165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016363735
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0167-2789(92)90024-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1031809302
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0375-9601(93)90027-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1022198354
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.jde.2010.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025378236
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/s1387-6473(01)00153-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008468305
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/j100356a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666704
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1063/1.459840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058037851
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1063/1.4882163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022496382
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1063/1.4884495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011058167
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1063/1.4954024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050389137
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1063/1.527544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104563
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1073/pnas.1406630111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015801588
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1086/115978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058454557
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1088/0951-7715/21/1/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011356571
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1093/mnras/stt1640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059912667
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physreva.25.1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469913
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physreva.41.4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481261
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physreve.89.022902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037328466
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physreve.98.022214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106258788
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevlett.70.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806856
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevlett.85.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822394
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevlett.97.104101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028422068
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/mcse.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398463
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1142/8955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099009467
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.2514/3.5267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001150345
    179 rdf:type schema:CreativeWork
    180 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
    181 schema:name Department of Applied Mathematics, University of Colorado, 80309 0526, Boulder, CO, USA
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
    184 schema:name Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187, Dresden, Germany
    185 Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...