Moser’s Quadratic, Symplectic Map View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Arnd Bäcker, James D. Meiss

ABSTRACT

In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori. More... »

PAGES

654-664

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1560354718060023

DOI

http://dx.doi.org/10.1134/s1560354718060023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110564764


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Technische Universit\u00e4t Dresden, Institut f\u00fcr Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4cker", 
        "givenName": "Arnd", 
        "id": "sg:person.01130750013.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Colorado Boulder", 
          "id": "https://www.grid.ac/institutes/grid.266190.a", 
          "name": [
            "Department of Applied Mathematics, University of Colorado, 80309 0526, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meiss", 
        "givenName": "James D.", 
        "id": "sg:person.0643670514.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01221362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754556", 
          "https://doi.org/10.1007/bf01221362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01221362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754556", 
          "https://doi.org/10.1007/bf01221362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.5267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001150345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354713060154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004754839", 
          "https://doi.org/10.1134/s1560354713060154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00649198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008466259", 
          "https://doi.org/10.1007/bf00649198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00649198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008466259", 
          "https://doi.org/10.1007/bf00649198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1387-6473(01)00153-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008468305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-014-9591-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010547136", 
          "https://doi.org/10.1007/s10569-014-9591-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4884495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011058167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/21/1/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011356571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014945439", 
          "https://doi.org/10.1007/bf01078586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014945439", 
          "https://doi.org/10.1007/bf01078586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1406630111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015801588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1996.0165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016363735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10569-015-9665-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017807889", 
          "https://doi.org/10.1007/s10569-015-9665-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90027-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022198354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90027-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022198354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4882163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022496382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2010.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025378236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.104101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028422068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.104101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028422068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90024-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031809302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90024-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031809302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037328466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.022902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037328466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038318754", 
          "https://doi.org/10.1007/bf01608556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01608556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038318754", 
          "https://doi.org/10.1007/bf01608556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4954024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050389137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02572331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050789881", 
          "https://doi.org/10.1007/bf02572331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02572331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050789881", 
          "https://doi.org/10.1007/bf02572331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051689704", 
          "https://doi.org/10.1038/35071000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051689704", 
          "https://doi.org/10.1038/35071000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100356a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055666704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.459840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058037851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.527544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058104563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/115978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058454557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/253513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/stt1640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059912667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.1257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.1257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060469913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.4143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/8955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099009467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.98.022214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106258788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.98.022214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106258788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "In 1994, J\u00fcrgen Moser generalized H\u00e9non\u2019s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser\u2019s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser\u2019s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled H\u00e9non maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1560354718060023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136573", 
        "issn": [
          "1468-4845", 
          "1560-3547"
        ], 
        "name": "Regular and Chaotic Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Moser\u2019s Quadratic, Symplectic Map", 
    "pagination": "654-664", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99a16c1f03186efe21f13b191c8275d3348f215b14d7d355dc87810667429cd2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1560354718060023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110564764"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1560354718060023", 
      "https://app.dimensions.ai/details/publication/pub.1110564764"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12005_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1560354718060023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1560354718060023'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1560354718060023 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5ce0fd8368464baaac3118b36d415fb8
4 schema:citation sg:pub.10.1007/bf00649198
5 sg:pub.10.1007/bf01078586
6 sg:pub.10.1007/bf01221362
7 sg:pub.10.1007/bf01608556
8 sg:pub.10.1007/bf02572331
9 sg:pub.10.1007/s10569-014-9591-2
10 sg:pub.10.1007/s10569-015-9665-9
11 sg:pub.10.1038/35071000
12 sg:pub.10.1134/s1560354713060154
13 https://doi.org/10.1006/jdeq.1996.0165
14 https://doi.org/10.1016/0167-2789(92)90024-h
15 https://doi.org/10.1016/0375-9601(93)90027-w
16 https://doi.org/10.1016/j.jde.2010.12.023
17 https://doi.org/10.1016/s1387-6473(01)00153-1
18 https://doi.org/10.1021/j100356a014
19 https://doi.org/10.1063/1.459840
20 https://doi.org/10.1063/1.4882163
21 https://doi.org/10.1063/1.4884495
22 https://doi.org/10.1063/1.4954024
23 https://doi.org/10.1063/1.527544
24 https://doi.org/10.1073/pnas.1406630111
25 https://doi.org/10.1086/115978
26 https://doi.org/10.1088/0951-7715/21/1/r01
27 https://doi.org/10.1090/qam/253513
28 https://doi.org/10.1093/mnras/stt1640
29 https://doi.org/10.1103/physreva.25.1257
30 https://doi.org/10.1103/physreva.41.4143
31 https://doi.org/10.1103/physreve.89.022902
32 https://doi.org/10.1103/physreve.98.022214
33 https://doi.org/10.1103/physrevlett.70.2975
34 https://doi.org/10.1103/physrevlett.85.558
35 https://doi.org/10.1103/physrevlett.97.104101
36 https://doi.org/10.1109/mcse.2011.35
37 https://doi.org/10.1142/8955
38 https://doi.org/10.2514/3.5267
39 schema:datePublished 2018-11
40 schema:datePublishedReg 2018-11-01
41 schema:description In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none. The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N54944436720d4abb9169387116f29850
46 Nb02f4df4955c471e93007285f3b4feec
47 sg:journal.1136573
48 schema:name Moser’s Quadratic, Symplectic Map
49 schema:pagination 654-664
50 schema:productId N6ef607053e0042a5ab327ecb31944568
51 Nc508ae9601e847a8b581a3a3beab45be
52 Nfbbd73806bb0441a8a68e2e976505a50
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110564764
54 https://doi.org/10.1134/s1560354718060023
55 schema:sdDatePublished 2019-04-11T08:22
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N0a6bd7e0633e42bc891eb11260237802
58 schema:url https://link.springer.com/10.1134%2FS1560354718060023
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0a6bd7e0633e42bc891eb11260237802 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N54944436720d4abb9169387116f29850 schema:issueNumber 6
65 rdf:type schema:PublicationIssue
66 N5ce0fd8368464baaac3118b36d415fb8 rdf:first sg:person.01130750013.14
67 rdf:rest N5db0dd4c5e8d439da22aa4ba901103b1
68 N5db0dd4c5e8d439da22aa4ba901103b1 rdf:first sg:person.0643670514.20
69 rdf:rest rdf:nil
70 N6ef607053e0042a5ab327ecb31944568 schema:name doi
71 schema:value 10.1134/s1560354718060023
72 rdf:type schema:PropertyValue
73 Nb02f4df4955c471e93007285f3b4feec schema:volumeNumber 23
74 rdf:type schema:PublicationVolume
75 Nc508ae9601e847a8b581a3a3beab45be schema:name dimensions_id
76 schema:value pub.1110564764
77 rdf:type schema:PropertyValue
78 Nfbbd73806bb0441a8a68e2e976505a50 schema:name readcube_id
79 schema:value 99a16c1f03186efe21f13b191c8275d3348f215b14d7d355dc87810667429cd2
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136573 schema:issn 1468-4845
88 1560-3547
89 schema:name Regular and Chaotic Dynamics
90 rdf:type schema:Periodical
91 sg:person.01130750013.14 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
92 schema:familyName Bäcker
93 schema:givenName Arnd
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14
95 rdf:type schema:Person
96 sg:person.0643670514.20 schema:affiliation https://www.grid.ac/institutes/grid.266190.a
97 schema:familyName Meiss
98 schema:givenName James D.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643670514.20
100 rdf:type schema:Person
101 sg:pub.10.1007/bf00649198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008466259
102 https://doi.org/10.1007/bf00649198
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01078586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014945439
105 https://doi.org/10.1007/bf01078586
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01221362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754556
108 https://doi.org/10.1007/bf01221362
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01608556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
111 https://doi.org/10.1007/bf01608556
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02572331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050789881
114 https://doi.org/10.1007/bf02572331
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10569-014-9591-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010547136
117 https://doi.org/10.1007/s10569-014-9591-2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10569-015-9665-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017807889
120 https://doi.org/10.1007/s10569-015-9665-9
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/35071000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051689704
123 https://doi.org/10.1038/35071000
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s1560354713060154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004754839
126 https://doi.org/10.1134/s1560354713060154
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jdeq.1996.0165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016363735
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0167-2789(92)90024-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1031809302
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0375-9601(93)90027-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1022198354
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jde.2010.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025378236
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s1387-6473(01)00153-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008468305
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/j100356a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055666704
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.459840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058037851
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.4882163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022496382
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.4884495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011058167
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.4954024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050389137
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.527544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104563
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1073/pnas.1406630111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015801588
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1086/115978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058454557
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0951-7715/21/1/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011356571
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/mnras/stt1640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059912667
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physreva.25.1257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060469913
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.41.4143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481261
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreve.89.022902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037328466
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physreve.98.022214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106258788
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.70.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806856
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.85.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822394
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.97.104101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028422068
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/mcse.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398463
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1142/8955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099009467
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2514/3.5267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001150345
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.266190.a schema:alternateName University of Colorado Boulder
181 schema:name Department of Applied Mathematics, University of Colorado, 80309 0526, Boulder, CO, USA
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
184 schema:name Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187, Dresden, Germany
185 Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...