Recent Results on the Dynamics of Higher-dimensional Hénon Maps View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Stavros Anastassiou, Anastasios Bountis, Arnd Bäcker

ABSTRACT

We investigate different aspects of chaotic dynamics in Hénon maps of dimension higher than 2. First, we review recent results on the existence of homoclinic points in 2-d and 4-d such maps, by demonstrating how they can be located with great accuracy using the parametrization method. Then we turn our attention to perturbations of Hénon maps by an angle variable that are defined on the solid torus, and prove the existence of uniformly hyperbolic solenoid attractors for an open set of parameters.We thus argue that higher-dimensional Hénon maps exhibit a rich variety of chaotic behavior that deserves to be further studied in a systematic way. More... »

PAGES

161-177

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s156035471802003x

DOI

http://dx.doi.org/10.1134/s156035471802003x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103169935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Patras", 
          "id": "https://www.grid.ac/institutes/grid.11047.33", 
          "name": [
            "Center of Research and Applications of Nonlinear Systems (CRANS), University of Patras, Department of Mathematics, 26500, Rion, GR, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anastassiou", 
        "givenName": "Stavros", 
        "id": "sg:person.015531147607.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531147607.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nazarbayev University", 
          "id": "https://www.grid.ac/institutes/grid.428191.7", 
          "name": [
            "Department of Mathematics, School of Science and Technology, Nazarbayev University, Kabanbay-batyr 53, 010000, Astana, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bountis", 
        "givenName": "Anastasios", 
        "id": "sg:person.015324624672.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015324624672.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Technische Universit\u00e4t Dresden, Institut f\u00fcr Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Strasse 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4cker", 
        "givenName": "Arnd", 
        "id": "sg:person.01130750013.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4766590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-012-9162-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007956642", 
          "https://doi.org/10.1007/s00332-012-9162-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2006.12.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016410679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776106020166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017811916", 
          "https://doi.org/10.1134/s1063776106020166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776106020166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017811916", 
          "https://doi.org/10.1134/s1063776106020166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(00)00100-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021656110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023772102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023772102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023772102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354714040042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025890093", 
          "https://doi.org/10.1134/s1560354714040042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23666-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028957547", 
          "https://doi.org/10.1007/978-3-642-23666-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23666-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028957547", 
          "https://doi.org/10.1007/978-3-642-23666-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030803612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-9593(00)87721-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032178199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(96)00399-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034428217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040799567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indag.2014.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041585947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02684369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042468222", 
          "https://doi.org/10.1007/bf02684369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s014338570000482x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046445676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s014338570000482x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046445676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2004.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051029170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/33/45/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059077135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/15/5/313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/04060487x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/090776329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100795176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062858899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/12088224x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062869607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127414400033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062957001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdsb.2010.14.871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071736559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1060674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083781969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6544/aa7e9b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091676355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "We investigate different aspects of chaotic dynamics in H\u00e9non maps of dimension higher than 2. First, we review recent results on the existence of homoclinic points in 2-d and 4-d such maps, by demonstrating how they can be located with great accuracy using the parametrization method. Then we turn our attention to perturbations of H\u00e9non maps by an angle variable that are defined on the solid torus, and prove the existence of uniformly hyperbolic solenoid attractors for an open set of parameters.We thus argue that higher-dimensional H\u00e9non maps exhibit a rich variety of chaotic behavior that deserves to be further studied in a systematic way.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s156035471802003x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136573", 
        "issn": [
          "1468-4845", 
          "1560-3547"
        ], 
        "name": "Regular and Chaotic Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Recent Results on the Dynamics of Higher-dimensional H\u00e9non Maps", 
    "pagination": "161-177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9a991c8257e8bd8cdd285618037304da47409e72e528d80449f3833fa1b5afe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s156035471802003x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103169935"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s156035471802003x", 
      "https://app.dimensions.ai/details/publication/pub.1103169935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S156035471802003X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s156035471802003x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s156035471802003x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s156035471802003x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s156035471802003x'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s156035471802003x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d731de31b0444bca8ae1deaac251e59
4 schema:citation sg:pub.10.1007/978-3-642-23666-2
5 sg:pub.10.1007/bf02684369
6 sg:pub.10.1007/s00332-012-9162-1
7 sg:pub.10.1134/s1063776106020166
8 sg:pub.10.1134/s1560354714040042
9 https://app.dimensions.ai/details/publication/pub.1023772102
10 https://doi.org/10.1016/0375-9601(96)00399-4
11 https://doi.org/10.1016/j.chaos.2010.07.003
12 https://doi.org/10.1016/j.indag.2014.10.002
13 https://doi.org/10.1016/j.jde.2004.12.003
14 https://doi.org/10.1016/j.physleta.2006.12.071
15 https://doi.org/10.1016/s0012-9593(00)87721-6
16 https://doi.org/10.1016/s0167-2789(00)00105-6
17 https://doi.org/10.1016/s0375-9601(00)00100-6
18 https://doi.org/10.1017/cbo9780511809187
19 https://doi.org/10.1017/s014338570000482x
20 https://doi.org/10.1063/1.4766590
21 https://doi.org/10.1088/0305-4470/33/45/305
22 https://doi.org/10.1088/0951-7715/15/5/313
23 https://doi.org/10.1088/1361-6544/aa7e9b
24 https://doi.org/10.1137/04060487x
25 https://doi.org/10.1137/090776329
26 https://doi.org/10.1137/100795176
27 https://doi.org/10.1137/12088224x
28 https://doi.org/10.1137/16m1060674
29 https://doi.org/10.1142/s0218127414400033
30 https://doi.org/10.3934/dcdsb.2010.14.871
31 schema:datePublished 2018-03
32 schema:datePublishedReg 2018-03-01
33 schema:description We investigate different aspects of chaotic dynamics in Hénon maps of dimension higher than 2. First, we review recent results on the existence of homoclinic points in 2-d and 4-d such maps, by demonstrating how they can be located with great accuracy using the parametrization method. Then we turn our attention to perturbations of Hénon maps by an angle variable that are defined on the solid torus, and prove the existence of uniformly hyperbolic solenoid attractors for an open set of parameters.We thus argue that higher-dimensional Hénon maps exhibit a rich variety of chaotic behavior that deserves to be further studied in a systematic way.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N16a8215742b54b498c6dae7580a41330
38 Nb25087f326924487a16a05819d064c7e
39 sg:journal.1136573
40 schema:name Recent Results on the Dynamics of Higher-dimensional Hénon Maps
41 schema:pagination 161-177
42 schema:productId N0d491e0025464c88b5f3ed8595aece00
43 N133eb2d9bc654fa7868a285c66a588db
44 N6a4100a779bc4f5597a2749cb818a85c
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103169935
46 https://doi.org/10.1134/s156035471802003x
47 schema:sdDatePublished 2019-04-11T13:51
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N0d5401d24e354cb889c948b4c2127b15
50 schema:url http://link.springer.com/10.1134/S156035471802003X
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N0d491e0025464c88b5f3ed8595aece00 schema:name doi
55 schema:value 10.1134/s156035471802003x
56 rdf:type schema:PropertyValue
57 N0d5401d24e354cb889c948b4c2127b15 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N133eb2d9bc654fa7868a285c66a588db schema:name dimensions_id
60 schema:value pub.1103169935
61 rdf:type schema:PropertyValue
62 N16a8215742b54b498c6dae7580a41330 schema:issueNumber 2
63 rdf:type schema:PublicationIssue
64 N32c2fca056ec4e7cb4c753528a212ce9 rdf:first sg:person.01130750013.14
65 rdf:rest rdf:nil
66 N3d731de31b0444bca8ae1deaac251e59 rdf:first sg:person.015531147607.93
67 rdf:rest Necd999745b1d49e58944b1376d77ebc3
68 N6a4100a779bc4f5597a2749cb818a85c schema:name readcube_id
69 schema:value a9a991c8257e8bd8cdd285618037304da47409e72e528d80449f3833fa1b5afe
70 rdf:type schema:PropertyValue
71 Nb25087f326924487a16a05819d064c7e schema:volumeNumber 23
72 rdf:type schema:PublicationVolume
73 Necd999745b1d49e58944b1376d77ebc3 rdf:first sg:person.015324624672.74
74 rdf:rest N32c2fca056ec4e7cb4c753528a212ce9
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1136573 schema:issn 1468-4845
82 1560-3547
83 schema:name Regular and Chaotic Dynamics
84 rdf:type schema:Periodical
85 sg:person.01130750013.14 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
86 schema:familyName Bäcker
87 schema:givenName Arnd
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130750013.14
89 rdf:type schema:Person
90 sg:person.015324624672.74 schema:affiliation https://www.grid.ac/institutes/grid.428191.7
91 schema:familyName Bountis
92 schema:givenName Anastasios
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015324624672.74
94 rdf:type schema:Person
95 sg:person.015531147607.93 schema:affiliation https://www.grid.ac/institutes/grid.11047.33
96 schema:familyName Anastassiou
97 schema:givenName Stavros
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531147607.93
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-642-23666-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028957547
101 https://doi.org/10.1007/978-3-642-23666-2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02684369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042468222
104 https://doi.org/10.1007/bf02684369
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00332-012-9162-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007956642
107 https://doi.org/10.1007/s00332-012-9162-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s1063776106020166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017811916
110 https://doi.org/10.1134/s1063776106020166
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s1560354714040042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025890093
113 https://doi.org/10.1134/s1560354714040042
114 rdf:type schema:CreativeWork
115 https://app.dimensions.ai/details/publication/pub.1023772102 schema:CreativeWork
116 https://doi.org/10.1016/0375-9601(96)00399-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034428217
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.chaos.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030803612
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.indag.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041585947
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jde.2004.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051029170
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.physleta.2006.12.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016410679
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0012-9593(00)87721-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032178199
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0167-2789(00)00105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040799567
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0375-9601(00)00100-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656110
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/cbo9780511809187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668529
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s014338570000482x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046445676
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.4766590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672575
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0305-4470/33/45/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059077135
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0951-7715/15/5/313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109115
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/1361-6544/aa7e9b schema:sameAs https://app.dimensions.ai/details/publication/pub.1091676355
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/04060487x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844883
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/090776329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856873
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/100795176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062858899
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/12088224x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062869607
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/16m1060674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083781969
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1142/s0218127414400033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062957001
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3934/dcdsb.2010.14.871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071736559
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.11047.33 schema:alternateName University of Patras
159 schema:name Center of Research and Applications of Nonlinear Systems (CRANS), University of Patras, Department of Mathematics, 26500, Rion, GR, Greece
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
162 schema:name Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187, Dresden, Germany
163 Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062, Dresden, Germany
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.428191.7 schema:alternateName Nazarbayev University
166 schema:name Department of Mathematics, School of Science and Technology, Nazarbayev University, Kabanbay-batyr 53, 010000, Astana, Kazakhstan
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...