Periodic orbits in the restricted three-body problem and Arnold’s J+-invariant View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

Kai Cieliebak, Urs Frauenfelder, Otto van Koert

ABSTRACT

We apply Arnold’s theory of generic smooth plane curves to Stark–Zeeman systems. This is a class of Hamiltonian dynamical systems that describes the dynamics of an electron in an external electric and magnetic field, and includes many systems from celestial mechanics. Based on Arnold’s J+-invariant, we introduce invariants of periodic orbits in planar Stark–Zeeman systems and study their behavior. More... »

PAGES

408-434

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1560354717040050

DOI

http://dx.doi.org/10.1134/s1560354717040050

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090954024


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 14, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cieliebak", 
        "givenName": "Kai", 
        "id": "sg:person.01046203424.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046203424.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Mathematisches Institut, Universit\u00e4t Augsburg, Universit\u00e4tsstrasse 14, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frauenfelder", 
        "givenName": "Urs", 
        "id": "sg:person.01041640761.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041640761.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul National University", 
          "id": "https://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mathematics and Research Institute of Mathematics, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, 08826, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Koert", 
        "givenName": "Otto", 
        "id": "sg:person.015232027341.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232027341.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-69650-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008761571", 
          "https://doi.org/10.1007/3-540-69650-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1008761571", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010756190", 
          "https://doi.org/10.1007/pl00004407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/70.2.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030254493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02417978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033054282", 
          "https://doi.org/10.1007/bf02417978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90121-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045805262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(89)90121-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045805262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90089-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050979595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90089-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050979595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110901733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051137386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2369304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2369313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2369430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069896557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3792/pia/1195581385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071427136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "We apply Arnold\u2019s theory of generic smooth plane curves to Stark\u2013Zeeman systems. This is a class of Hamiltonian dynamical systems that describes the dynamics of an electron in an external electric and magnetic field, and includes many systems from celestial mechanics. Based on Arnold\u2019s J+-invariant, we introduce invariants of periodic orbits in planar Stark\u2013Zeeman systems and study their behavior.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1560354717040050", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136573", 
        "issn": [
          "1468-4845", 
          "1560-3547"
        ], 
        "name": "Regular and Chaotic Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Periodic orbits in the restricted three-body problem and Arnold\u2019s J+-invariant", 
    "pagination": "408-434", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f9cbee00e42eb2fdc7ecc1f5f2e9e8e126ad6ca0e5934e9ac5c5c8fd4926e14"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1560354717040050"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090954024"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1560354717040050", 
      "https://app.dimensions.ai/details/publication/pub.1090954024"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1560354717040050"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1560354717040050'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1560354717040050'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1560354717040050'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1560354717040050'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1560354717040050 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3a28cb91f33542138ea5cd76ebc37d5b
4 schema:citation sg:pub.10.1007/3-540-69650-4
5 sg:pub.10.1007/bf02417978
6 sg:pub.10.1007/pl00004407
7 https://app.dimensions.ai/details/publication/pub.1008761571
8 https://doi.org/10.1016/0370-1573(87)90089-5
9 https://doi.org/10.1016/0370-1573(89)90121-x
10 https://doi.org/10.1093/mnras/70.2.108
11 https://doi.org/10.1515/9783110901733
12 https://doi.org/10.2307/2369304
13 https://doi.org/10.2307/2369313
14 https://doi.org/10.2307/2369430
15 https://doi.org/10.2307/2373181
16 https://doi.org/10.3792/pia/1195581385
17 schema:datePublished 2017-07
18 schema:datePublishedReg 2017-07-01
19 schema:description We apply Arnold’s theory of generic smooth plane curves to Stark–Zeeman systems. This is a class of Hamiltonian dynamical systems that describes the dynamics of an electron in an external electric and magnetic field, and includes many systems from celestial mechanics. Based on Arnold’s J+-invariant, we introduce invariants of periodic orbits in planar Stark–Zeeman systems and study their behavior.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf Nd72e74c6fcc94c6f8246b59797e5f046
24 Nebe4ab9acd894f619931f7320e18a439
25 sg:journal.1136573
26 schema:name Periodic orbits in the restricted three-body problem and Arnold’s J+-invariant
27 schema:pagination 408-434
28 schema:productId N37cb203a364f40858465869c6ec5b9a7
29 N4bad4939b70346d3aefe34ef3dd3f7d9
30 Na58f4642489e4743830fb8d6f815b26d
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090954024
32 https://doi.org/10.1134/s1560354717040050
33 schema:sdDatePublished 2019-04-10T14:56
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9381e8cda65e48178503e3eea001e54c
36 schema:url http://link.springer.com/10.1134/S1560354717040050
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N37cb203a364f40858465869c6ec5b9a7 schema:name readcube_id
41 schema:value 6f9cbee00e42eb2fdc7ecc1f5f2e9e8e126ad6ca0e5934e9ac5c5c8fd4926e14
42 rdf:type schema:PropertyValue
43 N3a28cb91f33542138ea5cd76ebc37d5b rdf:first sg:person.01046203424.01
44 rdf:rest N7969e2841ae0474381ffc6fc926470f9
45 N4bad4939b70346d3aefe34ef3dd3f7d9 schema:name dimensions_id
46 schema:value pub.1090954024
47 rdf:type schema:PropertyValue
48 N7969e2841ae0474381ffc6fc926470f9 rdf:first sg:person.01041640761.46
49 rdf:rest Nef4f384970984cd884044eb8cf231380
50 N9381e8cda65e48178503e3eea001e54c schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Na58f4642489e4743830fb8d6f815b26d schema:name doi
53 schema:value 10.1134/s1560354717040050
54 rdf:type schema:PropertyValue
55 Nd72e74c6fcc94c6f8246b59797e5f046 schema:issueNumber 4
56 rdf:type schema:PublicationIssue
57 Nebe4ab9acd894f619931f7320e18a439 schema:volumeNumber 22
58 rdf:type schema:PublicationVolume
59 Nef4f384970984cd884044eb8cf231380 rdf:first sg:person.015232027341.47
60 rdf:rest rdf:nil
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136573 schema:issn 1468-4845
68 1560-3547
69 schema:name Regular and Chaotic Dynamics
70 rdf:type schema:Periodical
71 sg:person.01041640761.46 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
72 schema:familyName Frauenfelder
73 schema:givenName Urs
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041640761.46
75 rdf:type schema:Person
76 sg:person.01046203424.01 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
77 schema:familyName Cieliebak
78 schema:givenName Kai
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046203424.01
80 rdf:type schema:Person
81 sg:person.015232027341.47 schema:affiliation https://www.grid.ac/institutes/grid.31501.36
82 schema:familyName van Koert
83 schema:givenName Otto
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232027341.47
85 rdf:type schema:Person
86 sg:pub.10.1007/3-540-69650-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008761571
87 https://doi.org/10.1007/3-540-69650-4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02417978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033054282
90 https://doi.org/10.1007/bf02417978
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/pl00004407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010756190
93 https://doi.org/10.1007/pl00004407
94 rdf:type schema:CreativeWork
95 https://app.dimensions.ai/details/publication/pub.1008761571 schema:CreativeWork
96 https://doi.org/10.1016/0370-1573(87)90089-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050979595
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0370-1573(89)90121-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045805262
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1093/mnras/70.2.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030254493
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1515/9783110901733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051137386
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/2369304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896466
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/2369313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896472
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/2369430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896557
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2307/2373181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899762
111 rdf:type schema:CreativeWork
112 https://doi.org/10.3792/pia/1195581385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071427136
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.31501.36 schema:alternateName Seoul National University
115 schema:name Department of Mathematics and Research Institute of Mathematics, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, 08826, Seoul, South Korea
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
118 schema:name Mathematisches Institut, Universität Augsburg, Universitätsstrasse 14, 86159, Augsburg, Germany
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...