Generic perturbations of linear integrable Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11

AUTHORS

Abed Bounemoura

ABSTRACT

In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of ε−1) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time). More... »

PAGES

665-681

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1560354716060071

DOI

http://dx.doi.org/10.1134/s1560354716060071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052443696


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Mecanique Celeste et de Calcul des Ephemerides", 
          "id": "https://www.grid.ac/institutes/grid.462516.2", 
          "name": [
            "CNRS \u2013 CEREMADE, Universit\u00e9 Paris Dauphine, Place du Mar\u00e9chal de Lattre de Tassigny, 75775, Paris Cedex 16, France", 
            "IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bounemoura", 
        "givenName": "Abed", 
        "id": "sg:person.011754450105.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754450105.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00332-005-0692-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001843804", 
          "https://doi.org/10.1007/s00332-005-0692-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02180145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004400049", 
          "https://doi.org/10.1007/bf02180145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02180145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004400049", 
          "https://doi.org/10.1007/bf02180145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012181537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354713030040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012364036", 
          "https://doi.org/10.1134/s1560354713030040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-011-0137-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024116363", 
          "https://doi.org/10.1007/s00023-011-0137-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00945838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044257609", 
          "https://doi.org/10.1007/bf00945838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160350504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160350504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046452982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560354713030052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048500243", 
          "https://doi.org/10.1134/s1560354713030052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0021737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052916765", 
          "https://doi.org/10.1007/bfb0021737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385704000458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053909537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1963v018n05abeh004130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1963v018n06abeh001143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058193727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1977v032n06abeh003859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1973v019n03abeh001788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058199233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/12796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/mrl.2017.v24.n1.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085925510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/069/1858551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089197520"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11", 
    "datePublishedReg": "2016-11-01", 
    "description": "In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of \u03b5\u22121) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1560354716060071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136573", 
        "issn": [
          "1468-4845", 
          "1560-3547"
        ], 
        "name": "Regular and Chaotic Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Generic perturbations of linear integrable Hamiltonian systems", 
    "pagination": "665-681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9ce655c3960ef8cb002c78aced5d2edacce27df118fd700eb48e6c21e775f98"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1560354716060071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052443696"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1560354716060071", 
      "https://app.dimensions.ai/details/publication/pub.1052443696"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88257_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1560354716060071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1560354716060071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1560354716060071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1560354716060071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1560354716060071'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1560354716060071 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne7b31246dc714a6d9268f73799c015aa
4 schema:citation sg:pub.10.1007/bf00945838
5 sg:pub.10.1007/bf02180145
6 sg:pub.10.1007/bfb0021737
7 sg:pub.10.1007/s00023-011-0137-9
8 sg:pub.10.1007/s00332-005-0692-7
9 sg:pub.10.1134/s1560354713030040
10 sg:pub.10.1134/s1560354713030052
11 https://doi.org/10.1002/cpa.3160350504
12 https://doi.org/10.1016/j.aim.2016.01.012
13 https://doi.org/10.1017/s0143385704000458
14 https://doi.org/10.1070/rm1963v018n05abeh004130
15 https://doi.org/10.1070/rm1963v018n06abeh001143
16 https://doi.org/10.1070/rm1977v032n06abeh003859
17 https://doi.org/10.1070/sm1973v019n03abeh001788
18 https://doi.org/10.1090/proc/12796
19 https://doi.org/10.1090/pspum/069/1858551
20 https://doi.org/10.24033/asens.1549
21 https://doi.org/10.4310/mrl.2017.v24.n1.a2
22 schema:datePublished 2016-11
23 schema:datePublishedReg 2016-11-01
24 schema:description In this paper, we investigate perturbations of linear integrable Hamiltonian systems, with the aim of establishing results in the spirit of the KAM theorem (preservation of invariant tori), the Nekhoroshev theorem (stability of the action variables for a finite but long interval of time) and Arnold diffusion (instability of the action variables). Whether the frequency of the integrable system is resonant or not, it is known that the KAM theorem does not hold true for all perturbations; when the frequency is resonant, it is the Nekhoroshev theorem that does not hold true for all perturbations. Our first result deals with the resonant case: we prove a result of instability for a generic perturbation, which implies that the KAM and the Nekhoroshev theorem do not hold true even for a generic perturbation. The case where the frequency is nonresonant is more subtle. Our second result shows that for a generic perturbation the KAM theorem holds true. Concerning the Nekhrosohev theorem, it is known that one has stability over an exponentially long (with respect to some function of ε−1) interval of time and that this cannot be improved for all perturbations. Our third result shows that for a generic perturbation one has stability for a doubly exponentially long interval of time. The only question left unanswered is whether one has instability for a generic perturbation (necessarily after this very long interval of time).
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N440f0253c1e649d0bc7bb5f8331eb7ff
29 Na1edb681852a4984927ce45451b9dd46
30 sg:journal.1136573
31 schema:name Generic perturbations of linear integrable Hamiltonian systems
32 schema:pagination 665-681
33 schema:productId N3b31d1f4152145c1bfa2e2464f88a1bc
34 N7e39ae595257424c9ad1437b2abe4f01
35 Nd9c0bf6fa15d40dc809d82145c10a19e
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052443696
37 https://doi.org/10.1134/s1560354716060071
38 schema:sdDatePublished 2019-04-11T13:12
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N64cd5c4909fc4736985d49abca16e8a0
41 schema:url https://link.springer.com/10.1134%2FS1560354716060071
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N3b31d1f4152145c1bfa2e2464f88a1bc schema:name dimensions_id
46 schema:value pub.1052443696
47 rdf:type schema:PropertyValue
48 N440f0253c1e649d0bc7bb5f8331eb7ff schema:volumeNumber 21
49 rdf:type schema:PublicationVolume
50 N64cd5c4909fc4736985d49abca16e8a0 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N7e39ae595257424c9ad1437b2abe4f01 schema:name readcube_id
53 schema:value f9ce655c3960ef8cb002c78aced5d2edacce27df118fd700eb48e6c21e775f98
54 rdf:type schema:PropertyValue
55 Na1edb681852a4984927ce45451b9dd46 schema:issueNumber 6
56 rdf:type schema:PublicationIssue
57 Nd9c0bf6fa15d40dc809d82145c10a19e schema:name doi
58 schema:value 10.1134/s1560354716060071
59 rdf:type schema:PropertyValue
60 Ne7b31246dc714a6d9268f73799c015aa rdf:first sg:person.011754450105.04
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136573 schema:issn 1468-4845
69 1560-3547
70 schema:name Regular and Chaotic Dynamics
71 rdf:type schema:Periodical
72 sg:person.011754450105.04 schema:affiliation https://www.grid.ac/institutes/grid.462516.2
73 schema:familyName Bounemoura
74 schema:givenName Abed
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754450105.04
76 rdf:type schema:Person
77 sg:pub.10.1007/bf00945838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044257609
78 https://doi.org/10.1007/bf00945838
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02180145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004400049
81 https://doi.org/10.1007/bf02180145
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bfb0021737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052916765
84 https://doi.org/10.1007/bfb0021737
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00023-011-0137-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024116363
87 https://doi.org/10.1007/s00023-011-0137-9
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00332-005-0692-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001843804
90 https://doi.org/10.1007/s00332-005-0692-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1560354713030040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012364036
93 https://doi.org/10.1134/s1560354713030040
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1560354713030052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048500243
96 https://doi.org/10.1134/s1560354713030052
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/cpa.3160350504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046452982
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.aim.2016.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012181537
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/s0143385704000458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053909537
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1070/rm1963v018n05abeh004130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193720
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1070/rm1963v018n06abeh001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193727
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1070/rm1977v032n06abeh003859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194264
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1070/sm1973v019n03abeh001788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058199233
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1090/proc/12796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345130
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1090/pspum/069/1858551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089197520
115 rdf:type schema:CreativeWork
116 https://doi.org/10.24033/asens.1549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408137
117 rdf:type schema:CreativeWork
118 https://doi.org/10.4310/mrl.2017.v24.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085925510
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.462516.2 schema:alternateName Institut de Mecanique Celeste et de Calcul des Ephemerides
121 schema:name CNRS – CEREMADE, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny, 75775, Paris Cedex 16, France
122 IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014, Paris, France
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...