Features of Thermal Degradation of Filled Compositions Based on Styrene–Butadiene Thermoplastic Elastomers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-01-31

AUTHORS

L. S. Shibryaeva, N. D. Blinov, L. R. Lyusova, Yu. A. Naumova

ABSTRACT

The features of the structure and thermal degradation of the compositions of the butadiene–styrene thermoelastoplastic with a biodegradable polymer (polylactide) and surfactants (tetramethylenediethylenetetramine and distearyldimethylammonium chloride) have been studied. Morphology features of the formulations have been studied by means of scanning electron microscopy, whereas thermal and kinetic parameters of the decomposition of the components have been determined by means of thermogravimetry and differential thermogravimetry. Kinetic parameters of thermal decomposition have been calculated using the Freeman‒Carroll, Friedmen‒Ozawa, and Coats‒Redfern models. The decomposition parameters have been calculated using the differential-thermal curve deconvolution into the peaks characterizing the individual components. It has been shown that the introduction of polylactide and surfactants in the butadiene–styrene thermoelastoplastic leads to the change in the kinetics and mechanism of thermal decomposition of the polybutadiene and polystyrene components. Polylactide has decreased the maximum rate of the formulation mass loss in comparison with the individual thermoelastoplastic, whereas the surfactants have decreased it. The influence of the fillers on the kinetics of thermal decomposition is due to their intermolecular interactions with the thermoelastoplastic. It has been shown that the features of thermal decomposition of the filled butadiene–styrene thermoelastoplastic are determined by the lactide localization in the butadiene–styrene matrix around the polystyrene domains, whereas the surfactants are localized in the polylactide and in the butadiene–styrene thermoelastoplastic matrix, including the polystyrene blocks. More... »

PAGES

26-38

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s156009042202004x

DOI

http://dx.doi.org/10.1134/s156009042202004x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145132752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia", 
            "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shibryaeva", 
        "givenName": "L. S.", 
        "id": "sg:person.016117341733.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117341733.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blinov", 
        "givenName": "N. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyusova", 
        "givenName": "L. R.", 
        "id": "sg:person.013124526673.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124526673.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naumova", 
        "givenName": "Yu. A.", 
        "id": "sg:person.011260336203.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260336203.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965545x07010038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051900955", 
          "https://doi.org/10.1134/s0965545x07010038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-005-0951-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041106803", 
          "https://doi.org/10.1007/s10973-005-0951-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560090421030064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1138697684", 
          "https://doi.org/10.1134/s1560090421030064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-52097-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016204332", 
          "https://doi.org/10.1007/978-3-642-52097-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01914230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015085352", 
          "https://doi.org/10.1007/bf01914230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x19020123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1116676537", 
          "https://doi.org/10.1134/s0965545x19020123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x17010163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083876986", 
          "https://doi.org/10.1134/s0965545x17010163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965545x12030029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023153804", 
          "https://doi.org/10.1134/s0965545x12030029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10973-012-2406-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033153890", 
          "https://doi.org/10.1007/s10973-012-2406-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-01-31", 
    "datePublishedReg": "2022-01-31", 
    "description": "The features of the structure and thermal degradation of the compositions of the butadiene\u2013styrene thermoelastoplastic with a biodegradable polymer (polylactide) and surfactants (tetramethylenediethylenetetramine and distearyldimethylammonium chloride) have been studied. Morphology features of the formulations have been studied by means of scanning electron microscopy, whereas thermal and kinetic parameters of the decomposition of the components have been determined by means of thermogravimetry and differential thermogravimetry. Kinetic parameters of thermal decomposition have been calculated using the Freeman\u2012Carroll, Friedmen\u2012Ozawa, and Coats\u2012Redfern models. The decomposition parameters have been calculated using the differential-thermal curve deconvolution into the peaks characterizing the individual components. It has been shown that the introduction of polylactide and surfactants in the butadiene\u2013styrene thermoelastoplastic leads to the change in the kinetics and mechanism of thermal decomposition of the polybutadiene and polystyrene components. Polylactide has decreased the maximum rate of the formulation mass loss in comparison with the individual thermoelastoplastic, whereas the surfactants have decreased it. The influence of the fillers on the kinetics of thermal decomposition is due to their intermolecular interactions with the thermoelastoplastic. It has been shown that the features of thermal decomposition of the filled butadiene\u2013styrene thermoelastoplastic are determined by the lactide localization in the butadiene\u2013styrene matrix around the polystyrene domains, whereas the surfactants are localized in the polylactide and in the butadiene\u2013styrene thermoelastoplastic matrix, including the polystyrene blocks.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s156009042202004x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1400109", 
        "issn": [
          "0965-545X", 
          "1023-3091"
        ], 
        "name": "Polymer Science, Series B", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "keywords": [
      "thermal decomposition", 
      "thermal degradation", 
      "Coats-Redfern model", 
      "thermoelastoplastic", 
      "biodegradable polymers", 
      "thermoplastic elastomers", 
      "polystyrene component", 
      "means of thermogravimetry", 
      "kinetic parameters", 
      "polystyrene domains", 
      "electron microscopy", 
      "polylactide", 
      "morphology features", 
      "differential thermogravimetry", 
      "mass loss", 
      "thermogravimetry", 
      "decomposition parameters", 
      "Freeman-Carroll", 
      "filler", 
      "decomposition", 
      "surfactants", 
      "parameters", 
      "elastomers", 
      "matrix", 
      "polystyrene block", 
      "degradation", 
      "kinetics", 
      "polymers", 
      "individual components", 
      "curve deconvolution", 
      "components", 
      "microscopy", 
      "maximum rate", 
      "composition", 
      "polybutadiene", 
      "formulation", 
      "structure", 
      "influence", 
      "features", 
      "means", 
      "deconvolution", 
      "peak", 
      "model", 
      "intermolecular interactions", 
      "comparison", 
      "block", 
      "loss", 
      "rate", 
      "mechanism", 
      "introduction", 
      "interaction", 
      "domain", 
      "localization", 
      "changes"
    ], 
    "name": "Features of Thermal Degradation of Filled Compositions Based on Styrene\u2013Butadiene Thermoplastic Elastomers", 
    "pagination": "26-38", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145132752"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s156009042202004x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s156009042202004x", 
      "https://app.dimensions.ai/details/publication/pub.1145132752"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_939.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s156009042202004x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s156009042202004x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s156009042202004x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s156009042202004x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s156009042202004x'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      87 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s156009042202004x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc8e01f6a85a149fab564076ef6c2cca7
4 schema:citation sg:pub.10.1007/978-3-642-52097-6
5 sg:pub.10.1007/bf01914230
6 sg:pub.10.1007/s10973-005-0951-8
7 sg:pub.10.1007/s10973-012-2406-3
8 sg:pub.10.1134/s0965545x07010038
9 sg:pub.10.1134/s0965545x12030029
10 sg:pub.10.1134/s0965545x17010163
11 sg:pub.10.1134/s0965545x19020123
12 sg:pub.10.1134/s1560090421030064
13 schema:datePublished 2022-01-31
14 schema:datePublishedReg 2022-01-31
15 schema:description The features of the structure and thermal degradation of the compositions of the butadiene–styrene thermoelastoplastic with a biodegradable polymer (polylactide) and surfactants (tetramethylenediethylenetetramine and distearyldimethylammonium chloride) have been studied. Morphology features of the formulations have been studied by means of scanning electron microscopy, whereas thermal and kinetic parameters of the decomposition of the components have been determined by means of thermogravimetry and differential thermogravimetry. Kinetic parameters of thermal decomposition have been calculated using the Freeman‒Carroll, Friedmen‒Ozawa, and Coats‒Redfern models. The decomposition parameters have been calculated using the differential-thermal curve deconvolution into the peaks characterizing the individual components. It has been shown that the introduction of polylactide and surfactants in the butadiene–styrene thermoelastoplastic leads to the change in the kinetics and mechanism of thermal decomposition of the polybutadiene and polystyrene components. Polylactide has decreased the maximum rate of the formulation mass loss in comparison with the individual thermoelastoplastic, whereas the surfactants have decreased it. The influence of the fillers on the kinetics of thermal decomposition is due to their intermolecular interactions with the thermoelastoplastic. It has been shown that the features of thermal decomposition of the filled butadiene–styrene thermoelastoplastic are determined by the lactide localization in the butadiene–styrene matrix around the polystyrene domains, whereas the surfactants are localized in the polylactide and in the butadiene–styrene thermoelastoplastic matrix, including the polystyrene blocks.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N7de9b7bb981541d8bd525798f9a4b624
19 N9a33708cf3654cd683c837dbe9312b50
20 sg:journal.1400109
21 schema:keywords Coats-Redfern model
22 Freeman-Carroll
23 biodegradable polymers
24 block
25 changes
26 comparison
27 components
28 composition
29 curve deconvolution
30 decomposition
31 decomposition parameters
32 deconvolution
33 degradation
34 differential thermogravimetry
35 domain
36 elastomers
37 electron microscopy
38 features
39 filler
40 formulation
41 individual components
42 influence
43 interaction
44 intermolecular interactions
45 introduction
46 kinetic parameters
47 kinetics
48 localization
49 loss
50 mass loss
51 matrix
52 maximum rate
53 means
54 means of thermogravimetry
55 mechanism
56 microscopy
57 model
58 morphology features
59 parameters
60 peak
61 polybutadiene
62 polylactide
63 polymers
64 polystyrene block
65 polystyrene component
66 polystyrene domains
67 rate
68 structure
69 surfactants
70 thermal decomposition
71 thermal degradation
72 thermoelastoplastic
73 thermogravimetry
74 thermoplastic elastomers
75 schema:name Features of Thermal Degradation of Filled Compositions Based on Styrene–Butadiene Thermoplastic Elastomers
76 schema:pagination 26-38
77 schema:productId N344a9d6f4146451eaffb8ff43b6e3b00
78 N8892684c7dbc4c2782b4b56a96235e6b
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145132752
80 https://doi.org/10.1134/s156009042202004x
81 schema:sdDatePublished 2022-08-04T17:13
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N507ba2b609fb4d4ea1dad84a49bf9f95
84 schema:url https://doi.org/10.1134/s156009042202004x
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N0ae6adc28b2f42a8bf94d84b20af86e7 schema:affiliation grid-institutes:grid.4886.2
89 schema:familyName Blinov
90 schema:givenName N. D.
91 rdf:type schema:Person
92 N344a9d6f4146451eaffb8ff43b6e3b00 schema:name dimensions_id
93 schema:value pub.1145132752
94 rdf:type schema:PropertyValue
95 N507ba2b609fb4d4ea1dad84a49bf9f95 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N7de9b7bb981541d8bd525798f9a4b624 schema:volumeNumber 64
98 rdf:type schema:PublicationVolume
99 N8892684c7dbc4c2782b4b56a96235e6b schema:name doi
100 schema:value 10.1134/s156009042202004x
101 rdf:type schema:PropertyValue
102 N8cf76695e961447ab734972799abdb5a rdf:first sg:person.013124526673.04
103 rdf:rest Nfa9a9d4a53174cc5b494dbdd1008a7aa
104 N97efd751621b442dbfcc7d5eba43cf09 rdf:first N0ae6adc28b2f42a8bf94d84b20af86e7
105 rdf:rest N8cf76695e961447ab734972799abdb5a
106 N9a33708cf3654cd683c837dbe9312b50 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nc8e01f6a85a149fab564076ef6c2cca7 rdf:first sg:person.016117341733.12
109 rdf:rest N97efd751621b442dbfcc7d5eba43cf09
110 Nfa9a9d4a53174cc5b494dbdd1008a7aa rdf:first sg:person.011260336203.00
111 rdf:rest rdf:nil
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
116 schema:name Materials Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1400109 schema:issn 0965-545X
119 1023-3091
120 schema:name Polymer Science, Series B
121 schema:publisher Pleiades Publishing
122 rdf:type schema:Periodical
123 sg:person.011260336203.00 schema:affiliation grid-institutes:None
124 schema:familyName Naumova
125 schema:givenName Yu. A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260336203.00
127 rdf:type schema:Person
128 sg:person.013124526673.04 schema:affiliation grid-institutes:None
129 schema:familyName Lyusova
130 schema:givenName L. R.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013124526673.04
132 rdf:type schema:Person
133 sg:person.016117341733.12 schema:affiliation grid-institutes:None
134 schema:familyName Shibryaeva
135 schema:givenName L. S.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117341733.12
137 rdf:type schema:Person
138 sg:pub.10.1007/978-3-642-52097-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016204332
139 https://doi.org/10.1007/978-3-642-52097-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf01914230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015085352
142 https://doi.org/10.1007/bf01914230
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10973-005-0951-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041106803
145 https://doi.org/10.1007/s10973-005-0951-8
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10973-012-2406-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033153890
148 https://doi.org/10.1007/s10973-012-2406-3
149 rdf:type schema:CreativeWork
150 sg:pub.10.1134/s0965545x07010038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051900955
151 https://doi.org/10.1134/s0965545x07010038
152 rdf:type schema:CreativeWork
153 sg:pub.10.1134/s0965545x12030029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023153804
154 https://doi.org/10.1134/s0965545x12030029
155 rdf:type schema:CreativeWork
156 sg:pub.10.1134/s0965545x17010163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083876986
157 https://doi.org/10.1134/s0965545x17010163
158 rdf:type schema:CreativeWork
159 sg:pub.10.1134/s0965545x19020123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116676537
160 https://doi.org/10.1134/s0965545x19020123
161 rdf:type schema:CreativeWork
162 sg:pub.10.1134/s1560090421030064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138697684
163 https://doi.org/10.1134/s1560090421030064
164 rdf:type schema:CreativeWork
165 grid-institutes:None schema:alternateName Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia
166 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
167 Russian Technological University/Lomonosov Institute of Fine Chemical Technologies, 119435, Moscow, Russia
168 rdf:type schema:Organization
169 grid-institutes:grid.4886.2 schema:alternateName Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
170 schema:name Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334, Moscow, Russia
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...