Effect of Composition and Structure of Aqueous Monoethanolamine Solutions on Carbon Dioxide Sorption and Desorption in Purification of Gas Mixtures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

E. G. Novitskii, V. P. Vasilevskii, V. I. Vasil’eva, E. A. Goleva, E. A. Grushevenko, A. V. Volkov

ABSTRACT

Possibility of raising the efficiency of the monoethanolamine purification of gas mixtures to remove carbon dioxide is demonstrated with consideration for the real intermolecular interactions and the structuring in the absorbent solution. The composition and structure of individual aqueous monoethanolamine solutions with various concentrations and of the same solutions saturated with carbon dioxide were examined. The methods of viscometry and conductometry demonstrated that, at monoethanolamine concentrations exceeding 12 ± 2 wt %, micelles are formed on the background of the existence of associates with intermolecular hydrogen bonds. This necessitates use of high temperatures (120‒140°C) in the stage of carbon dioxide desorption. It was found that using a 12 wt % aqueous solution of monoethanolamine in purification of gas mixtures makes it possible to lower the desorption temperature of carbon dioxide to 90°C. This process is more efficient than the standard technology of CO2 removal from a 30 wt % monoethanolamine solution. This is so because, in addition to a lower expenditure of heat, the extraction of carbon dioxide grows by 16% at a simultaneous decrease in the absorbent expenditure by at least a factor of 2.5. More... »

PAGES

813-821

References to SciGraph publications

  • 2015-03. Modeling the structure of liquid monoethanolamine by molecular dynamics in RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1070427218050129

    DOI

    http://dx.doi.org/10.1134/s1070427218050129

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105836565


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novitskii", 
            "givenName": "E. G.", 
            "id": "sg:person.014270474463.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasilevskii", 
            "givenName": "V. P.", 
            "id": "sg:person.012346413177.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Voronezh State University", 
              "id": "https://www.grid.ac/institutes/grid.20567.36", 
              "name": [
                "Voronezh State University, Voronezh, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasil\u2019eva", 
            "givenName": "V. I.", 
            "id": "sg:person.01332521713.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332521713.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Voronezh State University", 
              "id": "https://www.grid.ac/institutes/grid.20567.36", 
              "name": [
                "Voronezh State University, Voronezh, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goleva", 
            "givenName": "E. A.", 
            "id": "sg:person.016124713411.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124713411.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grushevenko", 
            "givenName": "E. A.", 
            "id": "sg:person.011755064027.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Volkov", 
            "givenName": "A. V.", 
            "id": "sg:person.012655354565.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijggc.2012.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000841586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2012.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001173000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9614(82)90026-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001518958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1750-5836(07)00032-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002539107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jes.2014.06.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010673301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020184183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020184183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2012.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020220525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.egypro.2009.01.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022420792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2014.09.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023385570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(84)80021-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025357460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/p29890000331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027807607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0009-2509(79)85087-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032119833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s003602441503005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041212506", 
              "https://doi.org/10.1134/s003602441503005x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.egypro.2011.01.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049973540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00986449608936450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050686736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cssc.200900169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051598362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2010.04.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053144253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.est.5b02356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055087890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.iecr.6b00017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055091321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie010697c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055595780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie010697c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055595780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie302056f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055606089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01026a041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055762295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2516/ogst:2005028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070870480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4209/aaqr.2013.05.0150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072360664"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.memsci.2017.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084739632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471234990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471234990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05", 
        "datePublishedReg": "2018-05-01", 
        "description": "Possibility of raising the efficiency of the monoethanolamine purification of gas mixtures to remove carbon dioxide is demonstrated with consideration for the real intermolecular interactions and the structuring in the absorbent solution. The composition and structure of individual aqueous monoethanolamine solutions with various concentrations and of the same solutions saturated with carbon dioxide were examined. The methods of viscometry and conductometry demonstrated that, at monoethanolamine concentrations exceeding 12 \u00b1 2 wt %, micelles are formed on the background of the existence of associates with intermolecular hydrogen bonds. This necessitates use of high temperatures (120\u2012140\u00b0C) in the stage of carbon dioxide desorption. It was found that using a 12 wt % aqueous solution of monoethanolamine in purification of gas mixtures makes it possible to lower the desorption temperature of carbon dioxide to 90\u00b0C. This process is more efficient than the standard technology of CO2 removal from a 30 wt % monoethanolamine solution. This is so because, in addition to a lower expenditure of heat, the extraction of carbon dioxide grows by 16% at a simultaneous decrease in the absorbent expenditure by at least a factor of 2.5.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1070427218050129", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022288", 
            "issn": [
              "1070-4272", 
              "1608-3296"
            ], 
            "name": "Russian Journal of Applied Chemistry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "Effect of Composition and Structure of Aqueous Monoethanolamine Solutions on Carbon Dioxide Sorption and Desorption in Purification of Gas Mixtures", 
        "pagination": "813-821", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "42a43b08f5df82b817dff406273db6d5d1875a4cc43ab05e020d2a23166f31cc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1070427218050129"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105836565"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1070427218050129", 
          "https://app.dimensions.ai/details/publication/pub.1105836565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000570.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1070427218050129"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070427218050129'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070427218050129'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070427218050129'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070427218050129'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1070427218050129 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Ne79567cff5ea44b593baa436715bc228
    4 schema:citation sg:pub.10.1134/s003602441503005x
    5 https://doi.org/10.1002/0471234990
    6 https://doi.org/10.1002/cssc.200900169
    7 https://doi.org/10.1016/0009-2509(79)85087-3
    8 https://doi.org/10.1016/0009-2509(84)80021-4
    9 https://doi.org/10.1016/0021-9614(82)90026-x
    10 https://doi.org/10.1016/j.desal.2010.04.069
    11 https://doi.org/10.1016/j.egypro.2009.01.045
    12 https://doi.org/10.1016/j.egypro.2011.01.077
    13 https://doi.org/10.1016/j.ijggc.2012.02.014
    14 https://doi.org/10.1016/j.ijggc.2012.07.005
    15 https://doi.org/10.1016/j.ijggc.2012.11.017
    16 https://doi.org/10.1016/j.ijggc.2015.06.017
    17 https://doi.org/10.1016/j.jes.2014.06.037
    18 https://doi.org/10.1016/j.memsci.2017.04.007
    19 https://doi.org/10.1016/j.rser.2014.09.029
    20 https://doi.org/10.1016/s1750-5836(07)00032-1
    21 https://doi.org/10.1021/acs.est.5b02356
    22 https://doi.org/10.1021/acs.iecr.6b00017
    23 https://doi.org/10.1021/ie010697c
    24 https://doi.org/10.1021/ie302056f
    25 https://doi.org/10.1021/ja01026a041
    26 https://doi.org/10.1039/p29890000331
    27 https://doi.org/10.1080/00986449608936450
    28 https://doi.org/10.1126/science.1176731
    29 https://doi.org/10.2516/ogst:2005028
    30 https://doi.org/10.4209/aaqr.2013.05.0150
    31 schema:datePublished 2018-05
    32 schema:datePublishedReg 2018-05-01
    33 schema:description Possibility of raising the efficiency of the monoethanolamine purification of gas mixtures to remove carbon dioxide is demonstrated with consideration for the real intermolecular interactions and the structuring in the absorbent solution. The composition and structure of individual aqueous monoethanolamine solutions with various concentrations and of the same solutions saturated with carbon dioxide were examined. The methods of viscometry and conductometry demonstrated that, at monoethanolamine concentrations exceeding 12 ± 2 wt %, micelles are formed on the background of the existence of associates with intermolecular hydrogen bonds. This necessitates use of high temperatures (120‒140°C) in the stage of carbon dioxide desorption. It was found that using a 12 wt % aqueous solution of monoethanolamine in purification of gas mixtures makes it possible to lower the desorption temperature of carbon dioxide to 90°C. This process is more efficient than the standard technology of CO2 removal from a 30 wt % monoethanolamine solution. This is so because, in addition to a lower expenditure of heat, the extraction of carbon dioxide grows by 16% at a simultaneous decrease in the absorbent expenditure by at least a factor of 2.5.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N3788182d669c4524b46d2a351a4d06cd
    38 Na84331aa75b2410089581cc0e1146f70
    39 sg:journal.1022288
    40 schema:name Effect of Composition and Structure of Aqueous Monoethanolamine Solutions on Carbon Dioxide Sorption and Desorption in Purification of Gas Mixtures
    41 schema:pagination 813-821
    42 schema:productId N4ae0eb65cfab4255ab7f4c4f6db0b01a
    43 N6e44afab2cfd44cfa38bcacafc7274c5
    44 N9d245da5379f47adb87bd638f1f64758
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105836565
    46 https://doi.org/10.1134/s1070427218050129
    47 schema:sdDatePublished 2019-04-10T20:06
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N13df70c2fa054320880f0e4e4c0067d4
    50 schema:url https://link.springer.com/10.1134%2FS1070427218050129
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N13df70c2fa054320880f0e4e4c0067d4 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N3788182d669c4524b46d2a351a4d06cd schema:volumeNumber 91
    57 rdf:type schema:PublicationVolume
    58 N4ae0eb65cfab4255ab7f4c4f6db0b01a schema:name dimensions_id
    59 schema:value pub.1105836565
    60 rdf:type schema:PropertyValue
    61 N5539f1a11b05458ba8bf2c05b425a872 rdf:first sg:person.016124713411.73
    62 rdf:rest Ncb544b26e9f9410abd63f871ec764502
    63 N6e44afab2cfd44cfa38bcacafc7274c5 schema:name readcube_id
    64 schema:value 42a43b08f5df82b817dff406273db6d5d1875a4cc43ab05e020d2a23166f31cc
    65 rdf:type schema:PropertyValue
    66 N99886fac98944e3f9b3afc16201b4199 rdf:first sg:person.012655354565.76
    67 rdf:rest rdf:nil
    68 N9bd13dde77844cdb95a99f95da6a2b63 rdf:first sg:person.01332521713.40
    69 rdf:rest N5539f1a11b05458ba8bf2c05b425a872
    70 N9d245da5379f47adb87bd638f1f64758 schema:name doi
    71 schema:value 10.1134/s1070427218050129
    72 rdf:type schema:PropertyValue
    73 Na84331aa75b2410089581cc0e1146f70 schema:issueNumber 5
    74 rdf:type schema:PublicationIssue
    75 Naed5e07369b242eb9566fd1694328a82 rdf:first sg:person.012346413177.45
    76 rdf:rest N9bd13dde77844cdb95a99f95da6a2b63
    77 Ncb544b26e9f9410abd63f871ec764502 rdf:first sg:person.011755064027.24
    78 rdf:rest N99886fac98944e3f9b3afc16201b4199
    79 Ne79567cff5ea44b593baa436715bc228 rdf:first sg:person.014270474463.48
    80 rdf:rest Naed5e07369b242eb9566fd1694328a82
    81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Chemical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Physical Chemistry (incl. Structural)
    86 rdf:type schema:DefinedTerm
    87 sg:journal.1022288 schema:issn 1070-4272
    88 1608-3296
    89 schema:name Russian Journal of Applied Chemistry
    90 rdf:type schema:Periodical
    91 sg:person.011755064027.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    92 schema:familyName Grushevenko
    93 schema:givenName E. A.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
    95 rdf:type schema:Person
    96 sg:person.012346413177.45 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    97 schema:familyName Vasilevskii
    98 schema:givenName V. P.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45
    100 rdf:type schema:Person
    101 sg:person.012655354565.76 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    102 schema:familyName Volkov
    103 schema:givenName A. V.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
    105 rdf:type schema:Person
    106 sg:person.01332521713.40 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
    107 schema:familyName Vasil’eva
    108 schema:givenName V. I.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332521713.40
    110 rdf:type schema:Person
    111 sg:person.014270474463.48 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    112 schema:familyName Novitskii
    113 schema:givenName E. G.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48
    115 rdf:type schema:Person
    116 sg:person.016124713411.73 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
    117 schema:familyName Goleva
    118 schema:givenName E. A.
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124713411.73
    120 rdf:type schema:Person
    121 sg:pub.10.1134/s003602441503005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041212506
    122 https://doi.org/10.1134/s003602441503005x
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1002/0471234990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661131
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/cssc.200900169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051598362
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0009-2509(79)85087-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032119833
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0009-2509(84)80021-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025357460
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/0021-9614(82)90026-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001518958
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.desal.2010.04.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053144253
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.egypro.2009.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022420792
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.egypro.2011.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049973540
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.ijggc.2012.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020220525
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.ijggc.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001173000
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.ijggc.2012.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000841586
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.ijggc.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036818372
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.jes.2014.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010673301
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.memsci.2017.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084739632
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.rser.2014.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023385570
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/s1750-5836(07)00032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002539107
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1021/acs.est.5b02356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055087890
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1021/acs.iecr.6b00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055091321
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1021/ie010697c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055595780
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1021/ie302056f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055606089
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1021/ja01026a041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055762295
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1039/p29890000331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027807607
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1080/00986449608936450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050686736
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1126/science.1176731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020184183
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.2516/ogst:2005028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070870480
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.4209/aaqr.2013.05.0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072360664
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
    177 schema:name Voronezh State University, Voronezh, Russia
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    180 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...