Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

E. A. Grushevenko, S. D. Bazhenov, V. P. Vasilevskii, E. G. Novitskii, A. V. Volkov

ABSTRACT

Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts. More... »

PAGES

602-610

References to SciGraph publications

  • 2017-11. Bioglycerol as an Alternative Raw Material for Basic Organic Synthesis in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2008-02. Power- and resource-saving process for producing methanol from natural gas in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2014-05. An experimental study of desublimation of carbon dioxide from a gas mixture in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2012-01. Analysis of a polytetrafluoroethylene coating deposited onto polyester fibers from supercritical carbon dioxide in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2016-12. Supercritical carbon dioxide extraction of Sm+3 and Nd+3 from solid matrix using Cyanex 921 in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2011-11. Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 1. Experimental methods and equipment in PETROLEUM CHEMISTRY
  • 2017-04. The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions in RUSSIAN JOURNAL OF ELECTROCHEMISTRY
  • 2017-01. Effect of CO2 on the oxidation of cyclohexene by H2O2 using Co1.5PW12O40 catalyst in PETROLEUM CHEMISTRY
  • 2016-10. Gas–liquid membrane contactors for carbon dioxide capture from gaseous streams in PETROLEUM CHEMISTRY
  • 2007-11. Activity and stability of Ni/Al2O3 catalysts in carbon dioxide conversion of methane as influenced by alkali metal oxide additives (K2O, Na2O, Li2O) in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2014-12. Influence of the composition of concentrate solutions on the efficiency of carbon dioxide removal from monoethanolamine aqueous solution by electrodialysis in PETROLEUM CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1070427218040110

    DOI

    http://dx.doi.org/10.1134/s1070427218040110

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105218945


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grushevenko", 
            "givenName": "E. A.", 
            "id": "sg:person.011755064027.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bazhenov", 
            "givenName": "S. D.", 
            "id": "sg:person.013301711627.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasilevskii", 
            "givenName": "V. P.", 
            "id": "sg:person.012346413177.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novitskii", 
            "givenName": "E. G.", 
            "id": "sg:person.014270474463.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Volkov", 
            "givenName": "A. V.", 
            "id": "sg:person.012655354565.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijggc.2012.07.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001173000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579508010028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001589946", 
              "https://doi.org/10.1134/s0040579508010028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es0158861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002735040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/es0158861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002735040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fuproc.2009.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005898535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2012.06.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006820879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544114080118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008148231", 
              "https://doi.org/10.1134/s0965544114080118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008450967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2013.11.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010612621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jes.2014.06.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010673301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2015.08.083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015942833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427207110201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016184374", 
              "https://doi.org/10.1134/s1070427207110201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020184183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1176731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020184183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2015.10.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022693247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579514030142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024885532", 
              "https://doi.org/10.1134/s0040579514030142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427212010284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030380078", 
              "https://doi.org/10.1134/s1070427212010284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.memsci.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033247248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.memsci.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033247248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.memsci.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033247248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.memsci.2015.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033247248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.09.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033608739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijggc.2015.06.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036818372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544111060168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041353055", 
              "https://doi.org/10.1134/s0965544111060168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.egypro.2014.11.668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046382010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4155/cmt.12.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050665515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.egypro.2014.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051655489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.desal.2010.04.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053144253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544116100029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054069439", 
              "https://doi.org/10.1134/s0965544116100029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544116100029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054069439", 
              "https://doi.org/10.1134/s0965544116100029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ie503506b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055624911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rc1995v064n09abeh000182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058192227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544117010108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083761099", 
              "https://doi.org/10.1134/s0965544117010108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544117010108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083761099", 
              "https://doi.org/10.1134/s0965544117010108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427216120223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084938531", 
              "https://doi.org/10.1134/s1070427216120223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1023193517040103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138271", 
              "https://doi.org/10.1134/s1023193517040103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427217110015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101370890", 
              "https://doi.org/10.1134/s1070427217110015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427217110015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101370890", 
              "https://doi.org/10.1134/s1070427217110015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427217110015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101370890", 
              "https://doi.org/10.1134/s1070427217110015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h\u20131 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1070427218040110", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1022288", 
            "issn": [
              "1070-4272", 
              "1608-3296"
            ], 
            "name": "Russian Journal of Applied Chemistry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "name": "Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts", 
        "pagination": "602-610", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bde78521e48a8005f1b399f708f1d96d35355f1ca97cec2dd6c95f02a7bd11be"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1070427218040110"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105218945"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1070427218040110", 
          "https://app.dimensions.ai/details/publication/pub.1105218945"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000570.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1070427218040110"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1070427218040110 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author Nb16a8a790f8445b2b6d61ef5ba2dc6a9
    4 schema:citation sg:pub.10.1134/s0040579508010028
    5 sg:pub.10.1134/s0040579514030142
    6 sg:pub.10.1134/s0965544111060168
    7 sg:pub.10.1134/s0965544114080118
    8 sg:pub.10.1134/s0965544116100029
    9 sg:pub.10.1134/s0965544117010108
    10 sg:pub.10.1134/s1023193517040103
    11 sg:pub.10.1134/s1070427207110201
    12 sg:pub.10.1134/s1070427212010284
    13 sg:pub.10.1134/s1070427216120223
    14 sg:pub.10.1134/s1070427217110015
    15 https://doi.org/10.1016/j.apenergy.2015.08.083
    16 https://doi.org/10.1016/j.apenergy.2015.10.011
    17 https://doi.org/10.1016/j.desal.2010.04.069
    18 https://doi.org/10.1016/j.desal.2013.11.043
    19 https://doi.org/10.1016/j.egypro.2014.07.016
    20 https://doi.org/10.1016/j.egypro.2014.11.668
    21 https://doi.org/10.1016/j.fuproc.2009.02.002
    22 https://doi.org/10.1016/j.ijggc.2012.06.015
    23 https://doi.org/10.1016/j.ijggc.2012.07.005
    24 https://doi.org/10.1016/j.ijggc.2015.06.017
    25 https://doi.org/10.1016/j.ijggc.2015.09.004
    26 https://doi.org/10.1016/j.ijggc.2015.09.015
    27 https://doi.org/10.1016/j.jes.2014.06.037
    28 https://doi.org/10.1016/j.memsci.2015.08.003
    29 https://doi.org/10.1021/es0158861
    30 https://doi.org/10.1021/ie503506b
    31 https://doi.org/10.1070/rc1995v064n09abeh000182
    32 https://doi.org/10.1126/science.1176731
    33 https://doi.org/10.4155/cmt.12.55
    34 schema:datePublished 2018-04
    35 schema:datePublishedReg 2018-04-01
    36 schema:description Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N020568188bde4a7dae53325c06fef6e9
    41 Nc7ed1e87a1f34d82a34db867b8467597
    42 sg:journal.1022288
    43 schema:name Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts
    44 schema:pagination 602-610
    45 schema:productId N841ade8ace3344e7b25f9ab502dd4489
    46 Na6438550e91744cbadfbca77b300d51a
    47 Ncf94ad778cdd4c5cbd711c093e754247
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105218945
    49 https://doi.org/10.1134/s1070427218040110
    50 schema:sdDatePublished 2019-04-10T19:17
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N65f05c1ed84a4076a547ce892af27991
    53 schema:url https://link.springer.com/10.1134%2FS1070427218040110
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N020568188bde4a7dae53325c06fef6e9 schema:volumeNumber 91
    58 rdf:type schema:PublicationVolume
    59 N0485291c2ca6486c9dc61ce282581d62 rdf:first sg:person.012655354565.76
    60 rdf:rest rdf:nil
    61 N50deeb4f7f1f4779a3330573c88ec662 rdf:first sg:person.012346413177.45
    62 rdf:rest N6afd8554c3334ad0a5f5641cce778b67
    63 N65f05c1ed84a4076a547ce892af27991 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N6afd8554c3334ad0a5f5641cce778b67 rdf:first sg:person.014270474463.48
    66 rdf:rest N0485291c2ca6486c9dc61ce282581d62
    67 N841ade8ace3344e7b25f9ab502dd4489 schema:name readcube_id
    68 schema:value bde78521e48a8005f1b399f708f1d96d35355f1ca97cec2dd6c95f02a7bd11be
    69 rdf:type schema:PropertyValue
    70 N8835ee66054c42f48f3a7362b108f05c rdf:first sg:person.013301711627.81
    71 rdf:rest N50deeb4f7f1f4779a3330573c88ec662
    72 Na6438550e91744cbadfbca77b300d51a schema:name dimensions_id
    73 schema:value pub.1105218945
    74 rdf:type schema:PropertyValue
    75 Nb16a8a790f8445b2b6d61ef5ba2dc6a9 rdf:first sg:person.011755064027.24
    76 rdf:rest N8835ee66054c42f48f3a7362b108f05c
    77 Nc7ed1e87a1f34d82a34db867b8467597 schema:issueNumber 4
    78 rdf:type schema:PublicationIssue
    79 Ncf94ad778cdd4c5cbd711c093e754247 schema:name doi
    80 schema:value 10.1134/s1070427218040110
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Engineering
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Chemical Engineering
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1022288 schema:issn 1070-4272
    89 1608-3296
    90 schema:name Russian Journal of Applied Chemistry
    91 rdf:type schema:Periodical
    92 sg:person.011755064027.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    93 schema:familyName Grushevenko
    94 schema:givenName E. A.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
    96 rdf:type schema:Person
    97 sg:person.012346413177.45 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    98 schema:familyName Vasilevskii
    99 schema:givenName V. P.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45
    101 rdf:type schema:Person
    102 sg:person.012655354565.76 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    103 schema:familyName Volkov
    104 schema:givenName A. V.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
    106 rdf:type schema:Person
    107 sg:person.013301711627.81 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    108 schema:familyName Bazhenov
    109 schema:givenName S. D.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81
    111 rdf:type schema:Person
    112 sg:person.014270474463.48 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    113 schema:familyName Novitskii
    114 schema:givenName E. G.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48
    116 rdf:type schema:Person
    117 sg:pub.10.1134/s0040579508010028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001589946
    118 https://doi.org/10.1134/s0040579508010028
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1134/s0040579514030142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024885532
    121 https://doi.org/10.1134/s0040579514030142
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1134/s0965544111060168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353055
    124 https://doi.org/10.1134/s0965544111060168
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1134/s0965544114080118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008148231
    127 https://doi.org/10.1134/s0965544114080118
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1134/s0965544116100029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054069439
    130 https://doi.org/10.1134/s0965544116100029
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1134/s0965544117010108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083761099
    133 https://doi.org/10.1134/s0965544117010108
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1134/s1023193517040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138271
    136 https://doi.org/10.1134/s1023193517040103
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1134/s1070427207110201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016184374
    139 https://doi.org/10.1134/s1070427207110201
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1134/s1070427212010284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030380078
    142 https://doi.org/10.1134/s1070427212010284
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1134/s1070427216120223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084938531
    145 https://doi.org/10.1134/s1070427216120223
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1134/s1070427217110015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101370890
    148 https://doi.org/10.1134/s1070427217110015
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.apenergy.2015.08.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015942833
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.apenergy.2015.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022693247
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.desal.2010.04.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053144253
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.desal.2013.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010612621
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.egypro.2014.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051655489
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.egypro.2014.11.668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046382010
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.fuproc.2009.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005898535
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.ijggc.2012.06.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006820879
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.ijggc.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001173000
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.ijggc.2015.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036818372
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.ijggc.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008450967
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.ijggc.2015.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033608739
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.jes.2014.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010673301
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.memsci.2015.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033247248
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/es0158861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735040
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1021/ie503506b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055624911
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1070/rc1995v064n09abeh000182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058192227
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1126/science.1176731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020184183
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.4155/cmt.12.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050665515
    187 rdf:type schema:CreativeWork
    188 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    189 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...