Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

E. A. Grushevenko, S. D. Bazhenov, V. P. Vasilevskii, E. G. Novitskii, A. V. Volkov

ABSTRACT

Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts. More... »

PAGES

602-610

References to SciGraph publications

  • 2017-11. Bioglycerol as an Alternative Raw Material for Basic Organic Synthesis in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2008-02. Power- and resource-saving process for producing methanol from natural gas in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2014-05. An experimental study of desublimation of carbon dioxide from a gas mixture in THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING
  • 2012-01. Analysis of a polytetrafluoroethylene coating deposited onto polyester fibers from supercritical carbon dioxide in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2016-12. Supercritical carbon dioxide extraction of Sm+3 and Nd+3 from solid matrix using Cyanex 921 in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2011-11-20. Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 1. Experimental methods and equipment in PETROLEUM CHEMISTRY
  • 2017-04. The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions in RUSSIAN JOURNAL OF ELECTROCHEMISTRY
  • 2017-01. Effect of CO2 on the oxidation of cyclohexene by H2O2 using Co1.5PW12O40 catalyst in PETROLEUM CHEMISTRY
  • 2016-10. Gas–liquid membrane contactors for carbon dioxide capture from gaseous streams in PETROLEUM CHEMISTRY
  • 2007-11. Activity and stability of Ni/Al2O3 catalysts in carbon dioxide conversion of methane as influenced by alkali metal oxide additives (K2O, Na2O, Li2O) in RUSSIAN JOURNAL OF APPLIED CHEMISTRY
  • 2014-12. Influence of the composition of concentrate solutions on the efficiency of carbon dioxide removal from monoethanolamine aqueous solution by electrodialysis in PETROLEUM CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1070427218040110

    DOI

    http://dx.doi.org/10.1134/s1070427218040110

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105218945


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grushevenko", 
            "givenName": "E. A.", 
            "id": "sg:person.011755064027.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bazhenov", 
            "givenName": "S. D.", 
            "id": "sg:person.013301711627.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasilevskii", 
            "givenName": "V. P.", 
            "id": "sg:person.012346413177.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Novitskii", 
            "givenName": "E. G.", 
            "id": "sg:person.014270474463.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Volkov", 
            "givenName": "A. V.", 
            "id": "sg:person.012655354565.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0965544111060168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041353055", 
              "https://doi.org/10.1134/s0965544111060168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579514030142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024885532", 
              "https://doi.org/10.1134/s0040579514030142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427212010284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030380078", 
              "https://doi.org/10.1134/s1070427212010284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040579508010028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001589946", 
              "https://doi.org/10.1134/s0040579508010028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427207110201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016184374", 
              "https://doi.org/10.1134/s1070427207110201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544117010108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083761099", 
              "https://doi.org/10.1134/s0965544117010108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544116100029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054069439", 
              "https://doi.org/10.1134/s0965544116100029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427216120223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084938531", 
              "https://doi.org/10.1134/s1070427216120223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1023193517040103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138271", 
              "https://doi.org/10.1134/s1023193517040103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1070427217110015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101370890", 
              "https://doi.org/10.1134/s1070427217110015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0965544114080118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008148231", 
              "https://doi.org/10.1134/s0965544114080118"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h\u20131 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1070427218040110", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1121207", 
            "issn": [
              "0044-4618", 
              "2314-6923"
            ], 
            "name": "Russian Journal of Applied Chemistry", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "91"
          }
        ], 
        "keywords": [
          "heat stable salts", 
          "degree of carbonation", 
          "corrosion activity", 
          "electrodialysis technology", 
          "removal of anions", 
          "absorbent solution", 
          "electrodialysis treatment", 
          "m3 h-1", 
          "aqueous solution", 
          "treatment scheme", 
          "stable salts", 
          "monoethanolamine", 
          "residual CO2", 
          "electrodialysis", 
          "absorbent", 
          "treatment unit", 
          "alkanolamine absorbents", 
          "two-step scheme", 
          "removal", 
          "carbonation", 
          "efficiency", 
          "CO2", 
          "solution", 
          "total volume", 
          "circulation volume", 
          "wt", 
          "scheme", 
          "same efficiency", 
          "technology", 
          "salt", 
          "volume", 
          "concentration", 
          "concentrate", 
          "loss", 
          "recovery", 
          "units", 
          "example", 
          "h-1", 
          "two-step removal", 
          "viewpoint", 
          "degree", 
          "treatment", 
          "levels", 
          "anions", 
          "activity", 
          "monoethanolamine loss", 
          "two-step electrodialysis treatment scheme", 
          "electrodialysis treatment scheme", 
          "monoethanol absorbent", 
          "one-step electrodialysis treatment scheme", 
          "Two-Step Electrodialysis Treatment", 
          "Remove Heat Stable Salts"
        ], 
        "name": "Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts", 
        "pagination": "602-610", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105218945"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1070427218040110"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1070427218040110", 
          "https://app.dimensions.ai/details/publication/pub.1105218945"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_765.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1070427218040110"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070427218040110'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      22 PREDICATES      89 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1070427218040110 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 schema:author N50343dff80fe493bb7a503129b5d14a1
    4 schema:citation sg:pub.10.1134/s0040579508010028
    5 sg:pub.10.1134/s0040579514030142
    6 sg:pub.10.1134/s0965544111060168
    7 sg:pub.10.1134/s0965544114080118
    8 sg:pub.10.1134/s0965544116100029
    9 sg:pub.10.1134/s0965544117010108
    10 sg:pub.10.1134/s1023193517040103
    11 sg:pub.10.1134/s1070427207110201
    12 sg:pub.10.1134/s1070427212010284
    13 sg:pub.10.1134/s1070427216120223
    14 sg:pub.10.1134/s1070427217110015
    15 schema:datePublished 2018-04
    16 schema:datePublishedReg 2018-04-01
    17 schema:description Electrodialysis technology was adapted to removal of heat stable salts from aqueous solutions of alkanolamine absorbents, with monoethanolamine as example. Removal of anions of heat stable salts by electrodialysis from a 30 wt % aqueous solution of monoethanolamine with the degree of carbonation of 0.2 mol of CO2 per mole of monoethanolamine was studied. The two-step removal of heat stable salts by electrodialysis allows the monoethanolamine loss to be reduced and the concentration of residual CO2 in the absorbent solution to be decreased. The suggested two-step electrodialysis treatment scheme allows the concentration of heat stable salts to be maintained on the required level from the viewpoint of their corrosion activity, the total volume of the concentrate to be decreased by 50%, and the monoethanolamine loss to be decreased by 30%. The treatment unit with the circulation volume of the monoethanol absorbent of 100 m3 h–1 was calculated for confirming the efficiency of the two-step electrodialysis treatment scheme. As compared to the one-step electrodialysis treatment scheme, the two-step scheme ensures recovery of 50% of monoethanolamine at the same efficiency of the removal of heat stable salts.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N97d1576a3296488caf343e23cc48cf44
    22 Neab65a1981ea48168e269e7c002e0099
    23 sg:journal.1121207
    24 schema:keywords CO2
    25 Remove Heat Stable Salts
    26 Two-Step Electrodialysis Treatment
    27 absorbent
    28 absorbent solution
    29 activity
    30 alkanolamine absorbents
    31 anions
    32 aqueous solution
    33 carbonation
    34 circulation volume
    35 concentrate
    36 concentration
    37 corrosion activity
    38 degree
    39 degree of carbonation
    40 efficiency
    41 electrodialysis
    42 electrodialysis technology
    43 electrodialysis treatment
    44 electrodialysis treatment scheme
    45 example
    46 h-1
    47 heat stable salts
    48 levels
    49 loss
    50 m3 h-1
    51 monoethanol absorbent
    52 monoethanolamine
    53 monoethanolamine loss
    54 one-step electrodialysis treatment scheme
    55 recovery
    56 removal
    57 removal of anions
    58 residual CO2
    59 salt
    60 same efficiency
    61 scheme
    62 solution
    63 stable salts
    64 technology
    65 total volume
    66 treatment
    67 treatment scheme
    68 treatment unit
    69 two-step electrodialysis treatment scheme
    70 two-step removal
    71 two-step scheme
    72 units
    73 viewpoint
    74 volume
    75 wt
    76 schema:name Two-Step Electrodialysis Treatment of Monoethanolamine to Remove Heat Stable Salts
    77 schema:pagination 602-610
    78 schema:productId N5ac5f660f2d24ebcad090e92f085d00f
    79 Nbc02070260504522a078b254f99d6a38
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105218945
    81 https://doi.org/10.1134/s1070427218040110
    82 schema:sdDatePublished 2021-11-01T18:32
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N383d047fb3ff4006a19968b0cd781b8d
    85 schema:url https://doi.org/10.1134/s1070427218040110
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N383d047fb3ff4006a19968b0cd781b8d schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N40167d59c0bd4ba086b7f4fa802d44c4 rdf:first sg:person.012346413177.45
    92 rdf:rest N9d57387eea2c4f8382a8e089515c2795
    93 N4cec1f463c1a477ea2a9f73fc97712b6 rdf:first sg:person.013301711627.81
    94 rdf:rest N40167d59c0bd4ba086b7f4fa802d44c4
    95 N50343dff80fe493bb7a503129b5d14a1 rdf:first sg:person.011755064027.24
    96 rdf:rest N4cec1f463c1a477ea2a9f73fc97712b6
    97 N5ac5f660f2d24ebcad090e92f085d00f schema:name dimensions_id
    98 schema:value pub.1105218945
    99 rdf:type schema:PropertyValue
    100 N93391743fcdb47218474b4798b1722b4 rdf:first sg:person.012655354565.76
    101 rdf:rest rdf:nil
    102 N97d1576a3296488caf343e23cc48cf44 schema:volumeNumber 91
    103 rdf:type schema:PublicationVolume
    104 N9d57387eea2c4f8382a8e089515c2795 rdf:first sg:person.014270474463.48
    105 rdf:rest N93391743fcdb47218474b4798b1722b4
    106 Nbc02070260504522a078b254f99d6a38 schema:name doi
    107 schema:value 10.1134/s1070427218040110
    108 rdf:type schema:PropertyValue
    109 Neab65a1981ea48168e269e7c002e0099 schema:issueNumber 4
    110 rdf:type schema:PublicationIssue
    111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Engineering
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Chemical Engineering
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1121207 schema:issn 0044-4618
    118 2314-6923
    119 schema:name Russian Journal of Applied Chemistry
    120 schema:publisher Pleiades Publishing
    121 rdf:type schema:Periodical
    122 sg:person.011755064027.24 schema:affiliation grid-institutes:grid.423490.8
    123 schema:familyName Grushevenko
    124 schema:givenName E. A.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755064027.24
    126 rdf:type schema:Person
    127 sg:person.012346413177.45 schema:affiliation grid-institutes:grid.423490.8
    128 schema:familyName Vasilevskii
    129 schema:givenName V. P.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012346413177.45
    131 rdf:type schema:Person
    132 sg:person.012655354565.76 schema:affiliation grid-institutes:grid.423490.8
    133 schema:familyName Volkov
    134 schema:givenName A. V.
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012655354565.76
    136 rdf:type schema:Person
    137 sg:person.013301711627.81 schema:affiliation grid-institutes:grid.423490.8
    138 schema:familyName Bazhenov
    139 schema:givenName S. D.
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301711627.81
    141 rdf:type schema:Person
    142 sg:person.014270474463.48 schema:affiliation grid-institutes:grid.423490.8
    143 schema:familyName Novitskii
    144 schema:givenName E. G.
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270474463.48
    146 rdf:type schema:Person
    147 sg:pub.10.1134/s0040579508010028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001589946
    148 https://doi.org/10.1134/s0040579508010028
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1134/s0040579514030142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024885532
    151 https://doi.org/10.1134/s0040579514030142
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1134/s0965544111060168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353055
    154 https://doi.org/10.1134/s0965544111060168
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1134/s0965544114080118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008148231
    157 https://doi.org/10.1134/s0965544114080118
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1134/s0965544116100029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054069439
    160 https://doi.org/10.1134/s0965544116100029
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1134/s0965544117010108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083761099
    163 https://doi.org/10.1134/s0965544117010108
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1134/s1023193517040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138271
    166 https://doi.org/10.1134/s1023193517040103
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1134/s1070427207110201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016184374
    169 https://doi.org/10.1134/s1070427207110201
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1134/s1070427212010284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030380078
    172 https://doi.org/10.1134/s1070427212010284
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1134/s1070427216120223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084938531
    175 https://doi.org/10.1134/s1070427216120223
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1134/s1070427217110015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101370890
    178 https://doi.org/10.1134/s1070427217110015
    179 rdf:type schema:CreativeWork
    180 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
    181 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...