Ontology type: schema:ScholarlyArticle
2016-12
AUTHORSChong Han, Maoxiang Jing, Xiangqian Shen, Guanjun Qiao
ABSTRACTA mesoporous iron–titanium mixed-oxides@activated carbon(AC) fiber membrane was fabricated by an electrospinning method and applied to the treatment of phenol waste water. The physical and chemical properties of the composite fiber membrane were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, UV–Vis light diffuse reflectance spectroscopy (DRS), Raman spectroscopy, respectively. The results indicate that the composite nanofiber membrane is composed of α-Fe2O3, anatase TiO2 and activated carbon phases with a specific surface area of 231 m2 g–1 and narrow pore size distribution of 3–6 nm. DRS reveals that the composite membrane has high photons absorption from both ultraviolet light and visible light irradiation owing to the combination of Fe2O3, TiO2 and carbon. The prepared nano Fe2O3–TiO2@AC fiber membrane can act as an efficient reusable photocatalyst and adsorbent for 100% remo val of phenol pollutant. This hybrid technique is hopeful to be widely used in the treatment of various organic waste waters. More... »
PAGES2008-2015
http://scigraph.springernature.com/pub.10.1134/s1070427216120120
DOIhttp://dx.doi.org/10.1134/s1070427216120120
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1084937576
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Environmental Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Jingjiang College, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"Jingjiang College, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Han",
"givenName": "Chong",
"id": "sg:person.01152277310.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152277310.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Jingjiang College, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"Jingjiang College, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Jing",
"givenName": "Maoxiang",
"id": "sg:person.01162236364.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Jingjiang College, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"Jingjiang College, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Xiangqian",
"id": "sg:person.0601655670.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Jingjiang College, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China",
"Jingjiang College, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Qiao",
"givenName": "Guanjun",
"id": "sg:person.013262645237.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262645237.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10853-015-8964-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022996069",
"https://doi.org/10.1007/s10853-015-8964-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02987422",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048815447",
"https://doi.org/10.1007/bf02987422"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-12",
"datePublishedReg": "2016-12-01",
"description": "A mesoporous iron\u2013titanium mixed-oxides@activated carbon(AC) fiber membrane was fabricated by an electrospinning method and applied to the treatment of phenol waste water. The physical and chemical properties of the composite fiber membrane were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, UV\u2013Vis light diffuse reflectance spectroscopy (DRS), Raman spectroscopy, respectively. The results indicate that the composite nanofiber membrane is composed of \u03b1-Fe2O3, anatase TiO2 and activated carbon phases with a specific surface area of 231 m2 g\u20131 and narrow pore size distribution of 3\u20136 nm. DRS reveals that the composite membrane has high photons absorption from both ultraviolet light and visible light irradiation owing to the combination of Fe2O3, TiO2 and carbon. The prepared nano Fe2O3\u2013TiO2@AC fiber membrane can act as an efficient reusable photocatalyst and adsorbent for 100% remo val of phenol pollutant. This hybrid technique is hopeful to be widely used in the treatment of various organic waste waters.",
"genre": "article",
"id": "sg:pub.10.1134/s1070427216120120",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1121207",
"issn": [
"0044-4618",
"2314-6923"
],
"name": "Russian Journal of Applied Chemistry",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "89"
}
],
"keywords": [
"diffuse reflectance spectroscopy",
"transmission electron microscopy",
"nano-Fe2O3",
"fiber membranes",
"narrow pore size distribution",
"electron microscopy",
"carbon fiber membrane",
"N2 adsorption/desorption",
"higher photon absorption",
"waste water",
"visible light irradiation",
"specific surface area",
"composite fiber membrane",
"combination of Fe2O3",
"composite nanofiber membranes",
"adsorption/desorption",
"pore size distribution",
"reusable photocatalyst",
"organic waste water",
"light irradiation",
"Raman spectroscopy",
"nanofiber membranes",
"reflectance spectroscopy",
"phenol pollutants",
"anatase TiO2",
"powder X",
"photon absorption",
"surface area",
"ray diffraction",
"composite membranes",
"carbon phase",
"chemical properties",
"Fe2O3",
"size distribution",
"TiO2",
"spectroscopy",
"hybrid removal",
"microscopy",
"ultraviolet light",
"photocatalyst",
"fabrication",
"water",
"hybrid technique",
"membrane",
"diffraction",
"desorption",
"phenol",
"pollutants",
"absorption",
"carbon",
"irradiation",
"light",
"properties",
"removal",
"phase",
"technique",
"Val",
"m2",
"method",
"distribution",
"results",
"area",
"combination",
"treatment"
],
"name": "Electrospinning fabrication of mesoporous nano Fe2O3-TiO2@activated carbon fiber membrane for hybrid removal of phenol from waste water",
"pagination": "2008-2015",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1084937576"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1070427216120120"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1070427216120120",
"https://app.dimensions.ai/details/publication/pub.1084937576"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_688.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1070427216120120"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070427216120120'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070427216120120'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070427216120120'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070427216120120'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
22 PREDICATES
95 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1070427216120120 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | ″ | anzsrc-for:09 |
4 | ″ | ″ | anzsrc-for:0904 |
5 | ″ | ″ | anzsrc-for:0907 |
6 | ″ | schema:author | N9acb4c4f6c2b4744af40fcb6e8fd10c1 |
7 | ″ | schema:citation | sg:pub.10.1007/bf02987422 |
8 | ″ | ″ | sg:pub.10.1007/s10853-015-8964-6 |
9 | ″ | schema:datePublished | 2016-12 |
10 | ″ | schema:datePublishedReg | 2016-12-01 |
11 | ″ | schema:description | A mesoporous iron–titanium mixed-oxides@activated carbon(AC) fiber membrane was fabricated by an electrospinning method and applied to the treatment of phenol waste water. The physical and chemical properties of the composite fiber membrane were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, UV–Vis light diffuse reflectance spectroscopy (DRS), Raman spectroscopy, respectively. The results indicate that the composite nanofiber membrane is composed of α-Fe2O3, anatase TiO2 and activated carbon phases with a specific surface area of 231 m2 g–1 and narrow pore size distribution of 3–6 nm. DRS reveals that the composite membrane has high photons absorption from both ultraviolet light and visible light irradiation owing to the combination of Fe2O3, TiO2 and carbon. The prepared nano Fe2O3–TiO2@AC fiber membrane can act as an efficient reusable photocatalyst and adsorbent for 100% remo val of phenol pollutant. This hybrid technique is hopeful to be widely used in the treatment of various organic waste waters. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N16754ea444a744c7a66b0d1ed7aa88d7 |
16 | ″ | ″ | N86a1cd8b3c60440295beaf2a24d7a60d |
17 | ″ | ″ | sg:journal.1121207 |
18 | ″ | schema:keywords | Fe2O3 |
19 | ″ | ″ | N2 adsorption/desorption |
20 | ″ | ″ | Raman spectroscopy |
21 | ″ | ″ | TiO2 |
22 | ″ | ″ | Val |
23 | ″ | ″ | absorption |
24 | ″ | ″ | adsorption/desorption |
25 | ″ | ″ | anatase TiO2 |
26 | ″ | ″ | area |
27 | ″ | ″ | carbon |
28 | ″ | ″ | carbon fiber membrane |
29 | ″ | ″ | carbon phase |
30 | ″ | ″ | chemical properties |
31 | ″ | ″ | combination |
32 | ″ | ″ | combination of Fe2O3 |
33 | ″ | ″ | composite fiber membrane |
34 | ″ | ″ | composite membranes |
35 | ″ | ″ | composite nanofiber membranes |
36 | ″ | ″ | desorption |
37 | ″ | ″ | diffraction |
38 | ″ | ″ | diffuse reflectance spectroscopy |
39 | ″ | ″ | distribution |
40 | ″ | ″ | electron microscopy |
41 | ″ | ″ | fabrication |
42 | ″ | ″ | fiber membranes |
43 | ″ | ″ | higher photon absorption |
44 | ″ | ″ | hybrid removal |
45 | ″ | ″ | hybrid technique |
46 | ″ | ″ | irradiation |
47 | ″ | ″ | light |
48 | ″ | ″ | light irradiation |
49 | ″ | ″ | m2 |
50 | ″ | ″ | membrane |
51 | ″ | ″ | method |
52 | ″ | ″ | microscopy |
53 | ″ | ″ | nano-Fe2O3 |
54 | ″ | ″ | nanofiber membranes |
55 | ″ | ″ | narrow pore size distribution |
56 | ″ | ″ | organic waste water |
57 | ″ | ″ | phase |
58 | ″ | ″ | phenol |
59 | ″ | ″ | phenol pollutants |
60 | ″ | ″ | photocatalyst |
61 | ″ | ″ | photon absorption |
62 | ″ | ″ | pollutants |
63 | ″ | ″ | pore size distribution |
64 | ″ | ″ | powder X |
65 | ″ | ″ | properties |
66 | ″ | ″ | ray diffraction |
67 | ″ | ″ | reflectance spectroscopy |
68 | ″ | ″ | removal |
69 | ″ | ″ | results |
70 | ″ | ″ | reusable photocatalyst |
71 | ″ | ″ | size distribution |
72 | ″ | ″ | specific surface area |
73 | ″ | ″ | spectroscopy |
74 | ″ | ″ | surface area |
75 | ″ | ″ | technique |
76 | ″ | ″ | transmission electron microscopy |
77 | ″ | ″ | treatment |
78 | ″ | ″ | ultraviolet light |
79 | ″ | ″ | visible light irradiation |
80 | ″ | ″ | waste water |
81 | ″ | ″ | water |
82 | ″ | schema:name | Electrospinning fabrication of mesoporous nano Fe2O3-TiO2@activated carbon fiber membrane for hybrid removal of phenol from waste water |
83 | ″ | schema:pagination | 2008-2015 |
84 | ″ | schema:productId | N9041f000c76148e1863c82e66cf03b00 |
85 | ″ | ″ | Neb6ff51abcaa436c917dd7ab0f0aaae1 |
86 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084937576 |
87 | ″ | ″ | https://doi.org/10.1134/s1070427216120120 |
88 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
89 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
90 | ″ | schema:sdPublisher | Nbeaec73fd2ed49a795b45db6ff02932e |
91 | ″ | schema:url | https://doi.org/10.1134/s1070427216120120 |
92 | ″ | sgo:license | sg:explorer/license/ |
93 | ″ | sgo:sdDataset | articles |
94 | ″ | rdf:type | schema:ScholarlyArticle |
95 | N16754ea444a744c7a66b0d1ed7aa88d7 | schema:issueNumber | 12 |
96 | ″ | rdf:type | schema:PublicationIssue |
97 | N83c59c2708664e39b115787b276e1acb | rdf:first | sg:person.013262645237.06 |
98 | ″ | rdf:rest | rdf:nil |
99 | N86a1cd8b3c60440295beaf2a24d7a60d | schema:volumeNumber | 89 |
100 | ″ | rdf:type | schema:PublicationVolume |
101 | N878889192abd459bbb339dc805bf9ce4 | rdf:first | sg:person.01162236364.13 |
102 | ″ | rdf:rest | N9ff7efcdaa394266aa45294e09ffacaf |
103 | N9041f000c76148e1863c82e66cf03b00 | schema:name | doi |
104 | ″ | schema:value | 10.1134/s1070427216120120 |
105 | ″ | rdf:type | schema:PropertyValue |
106 | N9acb4c4f6c2b4744af40fcb6e8fd10c1 | rdf:first | sg:person.01152277310.53 |
107 | ″ | rdf:rest | N878889192abd459bbb339dc805bf9ce4 |
108 | N9ff7efcdaa394266aa45294e09ffacaf | rdf:first | sg:person.0601655670.06 |
109 | ″ | rdf:rest | N83c59c2708664e39b115787b276e1acb |
110 | Nbeaec73fd2ed49a795b45db6ff02932e | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | Neb6ff51abcaa436c917dd7ab0f0aaae1 | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1084937576 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Chemical Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Physical Chemistry (incl. Structural) |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Engineering |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0904 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Chemical Engineering |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0907 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Environmental Engineering |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:journal.1121207 | schema:issn | 0044-4618 |
131 | ″ | ″ | 2314-6923 |
132 | ″ | schema:name | Russian Journal of Applied Chemistry |
133 | ″ | schema:publisher | Pleiades Publishing |
134 | ″ | rdf:type | schema:Periodical |
135 | sg:person.01152277310.53 | schema:affiliation | grid-institutes:grid.440785.a |
136 | ″ | schema:familyName | Han |
137 | ″ | schema:givenName | Chong |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152277310.53 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.01162236364.13 | schema:affiliation | grid-institutes:grid.440785.a |
141 | ″ | schema:familyName | Jing |
142 | ″ | schema:givenName | Maoxiang |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.013262645237.06 | schema:affiliation | grid-institutes:grid.440785.a |
146 | ″ | schema:familyName | Qiao |
147 | ″ | schema:givenName | Guanjun |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013262645237.06 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.0601655670.06 | schema:affiliation | grid-institutes:grid.440785.a |
151 | ″ | schema:familyName | Shen |
152 | ″ | schema:givenName | Xiangqian |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06 |
154 | ″ | rdf:type | schema:Person |
155 | sg:pub.10.1007/bf02987422 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048815447 |
156 | ″ | ″ | https://doi.org/10.1007/bf02987422 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | sg:pub.10.1007/s10853-015-8964-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022996069 |
159 | ″ | ″ | https://doi.org/10.1007/s10853-015-8964-6 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | grid-institutes:grid.440785.a | schema:alternateName | Jingjiang College, Jiangsu University, 212013, Zhenjiang, China |
162 | ″ | schema:name | Jingjiang College, Jiangsu University, 212013, Zhenjiang, China |
163 | ″ | ″ | School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, China |
164 | ″ | rdf:type | schema:Organization |