Synthesis and properties of carbon-carbon composite material based on nanoporous carbon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

V. V. Sokolov, Yu. A. Kukushkina, M. V. Tomkovich

ABSTRACT

Effect of synthesis parameters of carbon-carbon nanoporous composites in the form of compact bodies with various geometric shapes on their structure and properties was studied. The synthesis process includes three technological stages: molding of blanks with prescribed size and shape powdered Ti, Si, B, Mo, etc. carbides, their thermal treatment with methane to give a carbide-pyrocarbon composite, thermochemical treatment of the composite with chlorine to give the final material, carbon-carbon nanoporous composite in which nanoporous carbon is a filler, and pyrocarbon, a binder. It is shown that the ratio between the carbide phases and pyrocarbon, compaction pressure, and temperature of chlorination of the chemical composition of carbide affect the properties of the composite. The carbon-carbon composites synthesized contain nanopores 0.7–3 nm in size and micropores and have a large specific surface area (up to 1000 m2 g–1). The volume of the nanopores in the composites varies within the range 0.42–0.79 cm3 g–1. More... »

PAGES

990-998

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1070427215060154

DOI

http://dx.doi.org/10.1134/s1070427215060154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002650309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sokolov", 
        "givenName": "V. V.", 
        "id": "sg:person.014223213574.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223213574.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kukushkina", 
        "givenName": "Yu. A.", 
        "id": "sg:person.014416516426.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416516426.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomkovich", 
        "givenName": "M. V.", 
        "id": "sg:person.07632067207.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632067207.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012501614100017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051064680", 
          "https://doi.org/10.1134/s0012501614100017"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Effect of synthesis parameters of carbon-carbon nanoporous composites in the form of compact bodies with various geometric shapes on their structure and properties was studied. The synthesis process includes three technological stages: molding of blanks with prescribed size and shape powdered Ti, Si, B, Mo, etc. carbides, their thermal treatment with methane to give a carbide-pyrocarbon composite, thermochemical treatment of the composite with chlorine to give the final material, carbon-carbon nanoporous composite in which nanoporous carbon is a filler, and pyrocarbon, a binder. It is shown that the ratio between the carbide phases and pyrocarbon, compaction pressure, and temperature of chlorination of the chemical composition of carbide affect the properties of the composite. The carbon-carbon composites synthesized contain nanopores 0.7\u20133 nm in size and micropores and have a large specific surface area (up to 1000 m2 g\u20131). The volume of the nanopores in the composites varies within the range 0.42\u20130.79 cm3 g\u20131.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1070427215060154", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1121207", 
        "issn": [
          "0044-4618", 
          "2314-6923"
        ], 
        "name": "Russian Journal of Applied Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "keywords": [
      "nanoporous composites", 
      "carbon-carbon composite materials", 
      "carbon-carbon composites", 
      "nanoporous carbon", 
      "large specific surface area", 
      "specific surface area", 
      "composite materials", 
      "carbide phase", 
      "compaction pressure", 
      "thermochemical treatment", 
      "composites", 
      "thermal treatment", 
      "final material", 
      "cm3 g-1", 
      "carbide", 
      "synthesis process", 
      "technological stages", 
      "pyrocarbon", 
      "surface area", 
      "synthesis parameters", 
      "geometric shapes", 
      "compact body", 
      "properties", 
      "materials", 
      "filler", 
      "chemical composition", 
      "binder", 
      "micropores", 
      "Si", 
      "carbon", 
      "nanopores", 
      "methane", 
      "shape", 
      "Ti", 
      "blanks", 
      "temperature", 
      "size", 
      "g-1", 
      "parameters", 
      "phase", 
      "pressure", 
      "process", 
      "structure", 
      "ratio", 
      "chlorine", 
      "Mo", 
      "chlorination", 
      "composition", 
      "volume", 
      "effect", 
      "area", 
      "body", 
      "stage", 
      "synthesis", 
      "form", 
      "treatment", 
      "carbon-carbon nanoporous composites", 
      "temperature of chlorination", 
      "contain nanopores 0.7", 
      "nanopores 0.7"
    ], 
    "name": "Synthesis and properties of carbon-carbon composite material based on nanoporous carbon", 
    "pagination": "990-998", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002650309"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1070427215060154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1070427215060154", 
      "https://app.dimensions.ai/details/publication/pub.1002650309"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_662.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1070427215060154"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070427215060154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070427215060154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070427215060154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070427215060154'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      87 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1070427215060154 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N48c309a55932472683f73eda13760cd8
4 schema:citation sg:pub.10.1134/s0012501614100017
5 schema:datePublished 2015-06
6 schema:datePublishedReg 2015-06-01
7 schema:description Effect of synthesis parameters of carbon-carbon nanoporous composites in the form of compact bodies with various geometric shapes on their structure and properties was studied. The synthesis process includes three technological stages: molding of blanks with prescribed size and shape powdered Ti, Si, B, Mo, etc. carbides, their thermal treatment with methane to give a carbide-pyrocarbon composite, thermochemical treatment of the composite with chlorine to give the final material, carbon-carbon nanoporous composite in which nanoporous carbon is a filler, and pyrocarbon, a binder. It is shown that the ratio between the carbide phases and pyrocarbon, compaction pressure, and temperature of chlorination of the chemical composition of carbide affect the properties of the composite. The carbon-carbon composites synthesized contain nanopores 0.7–3 nm in size and micropores and have a large specific surface area (up to 1000 m2 g–1). The volume of the nanopores in the composites varies within the range 0.42–0.79 cm3 g–1.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N015409af7ae94e0cbe1d92aa33af960c
12 N825811a7f41844cd856c65985824f880
13 sg:journal.1121207
14 schema:keywords Mo
15 Si
16 Ti
17 area
18 binder
19 blanks
20 body
21 carbide
22 carbide phase
23 carbon
24 carbon-carbon composite materials
25 carbon-carbon composites
26 carbon-carbon nanoporous composites
27 chemical composition
28 chlorination
29 chlorine
30 cm3 g-1
31 compact body
32 compaction pressure
33 composite materials
34 composites
35 composition
36 contain nanopores 0.7
37 effect
38 filler
39 final material
40 form
41 g-1
42 geometric shapes
43 large specific surface area
44 materials
45 methane
46 micropores
47 nanopores
48 nanopores 0.7
49 nanoporous carbon
50 nanoporous composites
51 parameters
52 phase
53 pressure
54 process
55 properties
56 pyrocarbon
57 ratio
58 shape
59 size
60 specific surface area
61 stage
62 structure
63 surface area
64 synthesis
65 synthesis parameters
66 synthesis process
67 technological stages
68 temperature
69 temperature of chlorination
70 thermal treatment
71 thermochemical treatment
72 treatment
73 volume
74 schema:name Synthesis and properties of carbon-carbon composite material based on nanoporous carbon
75 schema:pagination 990-998
76 schema:productId N5adf762867db44ec9b481406754a3c7f
77 N5bde0ab380174b90b815735bec49bcf7
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002650309
79 https://doi.org/10.1134/s1070427215060154
80 schema:sdDatePublished 2022-01-01T18:36
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nfa0a28fb30884388a9bb0f8dc6d80d12
83 schema:url https://doi.org/10.1134/s1070427215060154
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N015409af7ae94e0cbe1d92aa33af960c schema:volumeNumber 88
88 rdf:type schema:PublicationVolume
89 N48c309a55932472683f73eda13760cd8 rdf:first sg:person.014223213574.72
90 rdf:rest Nf4eda1e0dd5c4ba2909e06de56369703
91 N5adf762867db44ec9b481406754a3c7f schema:name doi
92 schema:value 10.1134/s1070427215060154
93 rdf:type schema:PropertyValue
94 N5bde0ab380174b90b815735bec49bcf7 schema:name dimensions_id
95 schema:value pub.1002650309
96 rdf:type schema:PropertyValue
97 N825811a7f41844cd856c65985824f880 schema:issueNumber 6
98 rdf:type schema:PublicationIssue
99 Nf2ed19675a934417aa14d73b47c62aa8 rdf:first sg:person.07632067207.81
100 rdf:rest rdf:nil
101 Nf4eda1e0dd5c4ba2909e06de56369703 rdf:first sg:person.014416516426.81
102 rdf:rest Nf2ed19675a934417aa14d73b47c62aa8
103 Nfa0a28fb30884388a9bb0f8dc6d80d12 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1121207 schema:issn 0044-4618
112 2314-6923
113 schema:name Russian Journal of Applied Chemistry
114 schema:publisher Pleiades Publishing
115 rdf:type schema:Periodical
116 sg:person.014223213574.72 schema:affiliation grid-institutes:grid.423485.c
117 schema:familyName Sokolov
118 schema:givenName V. V.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014223213574.72
120 rdf:type schema:Person
121 sg:person.014416516426.81 schema:affiliation grid-institutes:grid.423485.c
122 schema:familyName Kukushkina
123 schema:givenName Yu. A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014416516426.81
125 rdf:type schema:Person
126 sg:person.07632067207.81 schema:affiliation grid-institutes:grid.423485.c
127 schema:familyName Tomkovich
128 schema:givenName M. V.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07632067207.81
130 rdf:type schema:Person
131 sg:pub.10.1134/s0012501614100017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051064680
132 https://doi.org/10.1134/s0012501614100017
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
135 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...