129Xe NMR spectroscopy of adsorbed xenon: Possibilites for exploration of microporous carbon materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11

AUTHORS

K. V. Romanenko, O. B. Lapina, X. Py, J. Fraissard

ABSTRACT

Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, σXe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; σXe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, σS. More... »

PAGES

2171

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1070363208110388

DOI

http://dx.doi.org/10.1134/s1070363208110388

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022688134


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent\u2019eva 5, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent\u2019eva 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanenko", 
        "givenName": "K. V.", 
        "id": "sg:person.01354566165.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354566165.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent\u2019eva 5, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent\u2019eva 5, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lapina", 
        "givenName": "O. B.", 
        "id": "sg:person.01213014345.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213014345.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNRS-PROMES, Processes Materials and Solar Energy Laboratory, Rambla de la Thermodynamique, 66100, Tecnosud, Perpignan Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CNRS-PROMES, Processes Materials and Solar Energy Laboratory, Rambla de la Thermodynamique, 66100, Tecnosud, Perpignan Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Py", 
        "givenName": "X.", 
        "id": "sg:person.013410024451.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410024451.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Physique Quantique, UMR CNRS 7142, Ecole Sup\u00e9rieure de Physique et de Chimie Industrielles (ESPCI), 75231, Paris Cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.15736.36", 
          "name": [
            "Laboratoire de Physique Quantique, UMR CNRS 7142, Ecole Sup\u00e9rieure de Physique et de Chimie Industrielles (ESPCI), 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraissard", 
        "givenName": "J.", 
        "id": "sg:person.0772574666.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772574666.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00763999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033337467", 
          "https://doi.org/10.1007/bf00763999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02071033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034577092", 
          "https://doi.org/10.1007/bf02071033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009697319670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047293401", 
          "https://doi.org/10.1023/a:1009697319670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11", 
    "datePublishedReg": "2008-11-01", 
    "description": "Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, \u03c3Xe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; \u03c3Xe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, \u03c3S.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1070363208110388", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1446214", 
        "issn": [
          "1070-3632", 
          "1608-3350"
        ], 
        "name": "Russian Journal of General Chemistry", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "microporous carbon materials", 
      "mean pore size", 
      "chemical shifts", 
      "carbon materials", 
      "pore size", 
      "N2 adsorption analysis", 
      "NMR spectroscopy", 
      "adsorption analysis", 
      "pyrolysis treatment", 
      "adsorbed xenon", 
      "single precursor", 
      "high surface", 
      "amorphous carbon", 
      "porous solids", 
      "xenon collisions", 
      "good probe", 
      "virial coefficients", 
      "Xe density", 
      "carbon", 
      "NMR", 
      "zeolite", 
      "spectroscopy", 
      "materials", 
      "precursors", 
      "Xe", 
      "characterization", 
      "surface", 
      "solids", 
      "probe", 
      "properties", 
      "shift", 
      "different origins", 
      "size", 
      "temperature", 
      "extensive use", 
      "xenon", 
      "series", 
      "density", 
      "possibilites", 
      "coefficient", 
      "pressure", 
      "method", 
      "model", 
      "analysis", 
      "collisions", 
      "use", 
      "origin", 
      "study", 
      "exploration", 
      "function", 
      "treatment"
    ], 
    "name": "129Xe NMR spectroscopy of adsorbed xenon: Possibilites for exploration of microporous carbon materials", 
    "pagination": "2171", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022688134"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1070363208110388"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1070363208110388", 
      "https://app.dimensions.ai/details/publication/pub.1022688134"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_454.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1070363208110388"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1070363208110388'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1070363208110388'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1070363208110388'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1070363208110388'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      79 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1070363208110388 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N70348ff65c024bdeafc089d60d3a8e78
4 schema:citation sg:pub.10.1007/bf00763999
5 sg:pub.10.1007/bf02071033
6 sg:pub.10.1023/a:1009697319670
7 schema:datePublished 2008-11
8 schema:datePublishedReg 2008-11-01
9 schema:description Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, σXe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; σXe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, σS.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N102b46be10914da780494a6f68fc6331
13 N72df272bc64640e3be3f8af71ab3c7f2
14 sg:journal.1446214
15 schema:keywords N2 adsorption analysis
16 NMR
17 NMR spectroscopy
18 Xe
19 Xe density
20 adsorbed xenon
21 adsorption analysis
22 amorphous carbon
23 analysis
24 carbon
25 carbon materials
26 characterization
27 chemical shifts
28 coefficient
29 collisions
30 density
31 different origins
32 exploration
33 extensive use
34 function
35 good probe
36 high surface
37 materials
38 mean pore size
39 method
40 microporous carbon materials
41 model
42 origin
43 pore size
44 porous solids
45 possibilites
46 precursors
47 pressure
48 probe
49 properties
50 pyrolysis treatment
51 series
52 shift
53 single precursor
54 size
55 solids
56 spectroscopy
57 study
58 surface
59 temperature
60 treatment
61 use
62 virial coefficients
63 xenon
64 xenon collisions
65 zeolite
66 schema:name 129Xe NMR spectroscopy of adsorbed xenon: Possibilites for exploration of microporous carbon materials
67 schema:pagination 2171
68 schema:productId N4919547b71444a6e93accdb689dea14a
69 Nb131d305d30e4b55b17b1940344f0c64
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022688134
71 https://doi.org/10.1134/s1070363208110388
72 schema:sdDatePublished 2022-12-01T06:26
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nd81664b57e304e098fa1d38e0fdc51a2
75 schema:url https://doi.org/10.1134/s1070363208110388
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N102b46be10914da780494a6f68fc6331 schema:volumeNumber 78
80 rdf:type schema:PublicationVolume
81 N4919547b71444a6e93accdb689dea14a schema:name doi
82 schema:value 10.1134/s1070363208110388
83 rdf:type schema:PropertyValue
84 N70348ff65c024bdeafc089d60d3a8e78 rdf:first sg:person.01354566165.89
85 rdf:rest Nbe4ca1314a60469aac357f2f7682d73e
86 N72df272bc64640e3be3f8af71ab3c7f2 schema:issueNumber 11
87 rdf:type schema:PublicationIssue
88 Nb131d305d30e4b55b17b1940344f0c64 schema:name dimensions_id
89 schema:value pub.1022688134
90 rdf:type schema:PropertyValue
91 Nbe4ca1314a60469aac357f2f7682d73e rdf:first sg:person.01213014345.27
92 rdf:rest Nd6ea68f931c245a69496a2604724e587
93 Nc33488b1651f4830aa0bcae151584818 rdf:first sg:person.0772574666.87
94 rdf:rest rdf:nil
95 Nd6ea68f931c245a69496a2604724e587 rdf:first sg:person.013410024451.96
96 rdf:rest Nc33488b1651f4830aa0bcae151584818
97 Nd81664b57e304e098fa1d38e0fdc51a2 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
100 schema:name Chemical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Chemistry (incl. Structural)
104 rdf:type schema:DefinedTerm
105 sg:journal.1446214 schema:issn 1070-3632
106 1608-3350
107 schema:name Russian Journal of General Chemistry
108 schema:publisher Pleiades Publishing
109 rdf:type schema:Periodical
110 sg:person.01213014345.27 schema:affiliation grid-institutes:grid.415877.8
111 schema:familyName Lapina
112 schema:givenName O. B.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213014345.27
114 rdf:type schema:Person
115 sg:person.013410024451.96 schema:affiliation grid-institutes:None
116 schema:familyName Py
117 schema:givenName X.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013410024451.96
119 rdf:type schema:Person
120 sg:person.01354566165.89 schema:affiliation grid-institutes:grid.415877.8
121 schema:familyName Romanenko
122 schema:givenName K. V.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354566165.89
124 rdf:type schema:Person
125 sg:person.0772574666.87 schema:affiliation grid-institutes:grid.15736.36
126 schema:familyName Fraissard
127 schema:givenName J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772574666.87
129 rdf:type schema:Person
130 sg:pub.10.1007/bf00763999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033337467
131 https://doi.org/10.1007/bf00763999
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf02071033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034577092
134 https://doi.org/10.1007/bf02071033
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1009697319670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047293401
137 https://doi.org/10.1023/a:1009697319670
138 rdf:type schema:CreativeWork
139 grid-institutes:None schema:alternateName CNRS-PROMES, Processes Materials and Solar Energy Laboratory, Rambla de la Thermodynamique, 66100, Tecnosud, Perpignan Cedex, France
140 schema:name CNRS-PROMES, Processes Materials and Solar Energy Laboratory, Rambla de la Thermodynamique, 66100, Tecnosud, Perpignan Cedex, France
141 rdf:type schema:Organization
142 grid-institutes:grid.15736.36 schema:alternateName Laboratoire de Physique Quantique, UMR CNRS 7142, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), 75231, Paris Cedex 05, France
143 schema:name Laboratoire de Physique Quantique, UMR CNRS 7142, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI), 75231, Paris Cedex 05, France
144 rdf:type schema:Organization
145 grid-institutes:grid.415877.8 schema:alternateName Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent’eva 5, 630090, Novosibirsk, Russia
146 schema:name Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. Lavrent’eva 5, 630090, Novosibirsk, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...