Neural network technique for identifying prognostic anomalies from low-frequency electromagnetic signals in the Kuril–Kamchatka region View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

I. Popova, A. Rozhnoi, M. Solovieva, B. Levin, V. Chebrov

ABSTRACT

In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M ≥ 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity. More... »

PAGES

305-317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1069351316020105

DOI

http://dx.doi.org/10.1134/s1069351316020105

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011491752


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. B. Gruzinskaya 10, 123995, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "I.", 
        "id": "sg:person.013315347703.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315347703.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. B. Gruzinskaya 10, 123995, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozhnoi", 
        "givenName": "A.", 
        "id": "sg:person.012745243771.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745243771.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. B. Gruzinskaya 10, 123995, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solovieva", 
        "givenName": "M.", 
        "id": "sg:person.012621650535.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621650535.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Marine Geology and Geophysics", 
          "id": "https://www.grid.ac/institutes/grid.494538.7", 
          "name": [
            "Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Sciences, ul. Nauki 1b, 693022, Yuzhno-Sakhalinsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levin", 
        "givenName": "B.", 
        "id": "sg:person.015667741263.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667741263.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, bulv. Piipa 9, 683006, Petropavlovsk-Kamchatskii, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chebrov", 
        "givenName": "V.", 
        "id": "sg:person.014040104765.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040104765.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5194/nhess-7-625-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003704929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-4-685-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004832995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-4-685-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004832995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-9-1727-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007010921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00876083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008399077", 
          "https://doi.org/10.1007/bf00876083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jastp.2010.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009381746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11589-011-0823-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025095010", 
          "https://doi.org/10.1007/s11589-011-0823-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11589-011-0823-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025095010", 
          "https://doi.org/10.1007/s11589-011-0823-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1484539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029498421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1443352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033969687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-006-9022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037126550", 
          "https://doi.org/10.1007/s10596-006-9022-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10596-006-9022-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037126550", 
          "https://doi.org/10.1007/s10596-006-9022-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-7-423-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040533343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pce.2006.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043190483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(89)90214-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043238829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(89)90214-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043238829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-8-1041-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049924734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-246x.2000.00065.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052931056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pce.2003.08.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053209903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2008.781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095597687"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M \u2265 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1069351316020105", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136060", 
        "issn": [
          "1069-3513", 
          "1555-6506"
        ], 
        "name": "Izvestiya, Physics of the Solid Earth", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Neural network technique for identifying prognostic anomalies from low-frequency electromagnetic signals in the Kuril\u2013Kamchatka region", 
    "pagination": "305-317", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36c08813552332b81fb97253e54bd828ed094e0313a381f6f66f5929bc2ab313"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1069351316020105"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011491752"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1069351316020105", 
      "https://app.dimensions.ai/details/publication/pub.1011491752"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1069351316020105"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1069351316020105'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1069351316020105'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1069351316020105'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1069351316020105'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1069351316020105 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3416818bae6243aeba13cf28c1b22580
4 schema:citation sg:pub.10.1007/bf00876083
5 sg:pub.10.1007/s10596-006-9022-x
6 sg:pub.10.1007/s11589-011-0823-1
7 https://doi.org/10.1016/0031-9201(89)90214-8
8 https://doi.org/10.1016/j.jastp.2010.05.009
9 https://doi.org/10.1016/j.pce.2003.08.061
10 https://doi.org/10.1016/j.pce.2006.02.033
11 https://doi.org/10.1046/j.1365-246x.2000.00065.x
12 https://doi.org/10.1109/icnc.2008.781
13 https://doi.org/10.1190/1.1443352
14 https://doi.org/10.1190/1.1484539
15 https://doi.org/10.5194/nhess-4-685-2004
16 https://doi.org/10.5194/nhess-7-423-2007
17 https://doi.org/10.5194/nhess-7-625-2007
18 https://doi.org/10.5194/nhess-8-1041-2008
19 https://doi.org/10.5194/nhess-9-1727-2009
20 schema:datePublished 2016-03
21 schema:datePublishedReg 2016-03-01
22 schema:description In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M ≥ 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N2bc336acdb6846fdb12562a41b007380
27 N5de0b35385dc477aa239aa39826cacb9
28 sg:journal.1136060
29 schema:name Neural network technique for identifying prognostic anomalies from low-frequency electromagnetic signals in the Kuril–Kamchatka region
30 schema:pagination 305-317
31 schema:productId N450f5b6b36b848a0be88cd01b0baaf63
32 N6854703b13bd4094bba3b349c192565d
33 Nec77aba54c7d4b048bb7b6b8c9136314
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011491752
35 https://doi.org/10.1134/s1069351316020105
36 schema:sdDatePublished 2019-04-10T20:45
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N8e2a6d9fc3904ab6abe3aaa4425d23e6
39 schema:url http://link.springer.com/10.1134%2FS1069351316020105
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N209f83b0520341d0b67ef0a928a7cd95 rdf:first sg:person.012621650535.12
44 rdf:rest Naafa24671f38460d9a727b1ec021d095
45 N2bc336acdb6846fdb12562a41b007380 schema:volumeNumber 52
46 rdf:type schema:PublicationVolume
47 N3416818bae6243aeba13cf28c1b22580 rdf:first sg:person.013315347703.00
48 rdf:rest N7255b87cdcb241b887b90f8a44bc9b65
49 N450f5b6b36b848a0be88cd01b0baaf63 schema:name readcube_id
50 schema:value 36c08813552332b81fb97253e54bd828ed094e0313a381f6f66f5929bc2ab313
51 rdf:type schema:PropertyValue
52 N5de0b35385dc477aa239aa39826cacb9 schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 N6854703b13bd4094bba3b349c192565d schema:name dimensions_id
55 schema:value pub.1011491752
56 rdf:type schema:PropertyValue
57 N7255b87cdcb241b887b90f8a44bc9b65 rdf:first sg:person.012745243771.06
58 rdf:rest N209f83b0520341d0b67ef0a928a7cd95
59 N8e2a6d9fc3904ab6abe3aaa4425d23e6 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N9955f39de7cc49e28127aad75c562829 rdf:first sg:person.014040104765.79
62 rdf:rest rdf:nil
63 Naafa24671f38460d9a727b1ec021d095 rdf:first sg:person.015667741263.36
64 rdf:rest N9955f39de7cc49e28127aad75c562829
65 Nec77aba54c7d4b048bb7b6b8c9136314 schema:name doi
66 schema:value 10.1134/s1069351316020105
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:journal.1136060 schema:issn 1069-3513
75 1555-6506
76 schema:name Izvestiya, Physics of the Solid Earth
77 rdf:type schema:Periodical
78 sg:person.012621650535.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Solovieva
80 schema:givenName M.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621650535.12
82 rdf:type schema:Person
83 sg:person.012745243771.06 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
84 schema:familyName Rozhnoi
85 schema:givenName A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745243771.06
87 rdf:type schema:Person
88 sg:person.013315347703.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
89 schema:familyName Popova
90 schema:givenName I.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013315347703.00
92 rdf:type schema:Person
93 sg:person.014040104765.79 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Chebrov
95 schema:givenName V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014040104765.79
97 rdf:type schema:Person
98 sg:person.015667741263.36 schema:affiliation https://www.grid.ac/institutes/grid.494538.7
99 schema:familyName Levin
100 schema:givenName B.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667741263.36
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00876083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008399077
104 https://doi.org/10.1007/bf00876083
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s10596-006-9022-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037126550
107 https://doi.org/10.1007/s10596-006-9022-x
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11589-011-0823-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025095010
110 https://doi.org/10.1007/s11589-011-0823-1
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0031-9201(89)90214-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043238829
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jastp.2010.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009381746
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.pce.2003.08.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053209903
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.pce.2006.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043190483
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1046/j.1365-246x.2000.00065.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052931056
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/icnc.2008.781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095597687
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1190/1.1443352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033969687
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1190/1.1484539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029498421
127 rdf:type schema:CreativeWork
128 https://doi.org/10.5194/nhess-4-685-2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004832995
129 rdf:type schema:CreativeWork
130 https://doi.org/10.5194/nhess-7-423-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040533343
131 rdf:type schema:CreativeWork
132 https://doi.org/10.5194/nhess-7-625-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003704929
133 rdf:type schema:CreativeWork
134 https://doi.org/10.5194/nhess-8-1041-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049924734
135 rdf:type schema:CreativeWork
136 https://doi.org/10.5194/nhess-9-1727-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007010921
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
139 schema:name Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, bulv. Piipa 9, 683006, Petropavlovsk-Kamchatskii, Russia
140 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, ul. B. Gruzinskaya 10, 123995, Moscow, Russia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.494538.7 schema:alternateName Institute of Marine Geology and Geophysics
143 schema:name Institute of Marine Geology and Geophysics, Far Eastern Branch, Russian Academy of Sciences, ul. Nauki 1b, 693022, Yuzhno-Sakhalinsk, Russia
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...