A Disproof the Le Bars Conjecture about the Zero–One Law for Existential Monadic Second-Order Sentences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

M. E. Zhukovskii, S. N. Popova

ABSTRACT

The Le Bars conjecture (2001) states that the binomial random graph G(n, 12) obeys the zero–one law for existential monadic sentences with two first-order variables. This conjecture is disproved. Moreover, it is proved that there exists an existential monadic sentence with a single monadic variable and two first-order variables whose truth probability does not converge. More... »

PAGES

638-640

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562418070311

DOI

http://dx.doi.org/10.1134/s1064562418070311

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111224428


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Adyghe State University", 
          "id": "https://www.grid.ac/institutes/grid.448568.3", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
            "Caucasus Mathematical Center, Adyghe State University, 385000, Maikop, Maikop, Republic of Adygea, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukovskii", 
        "givenName": "M. E.", 
        "id": "sg:person.011152672013.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "S. N.", 
        "id": "sg:person.015103671307.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103671307.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0001434616030032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001226749", 
          "https://doi.org/10.1134/s0001434616030032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(85)90112-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001660461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(85)90112-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001660461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(00)00149-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005361722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04538-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020409190", 
          "https://doi.org/10.1007/978-3-662-04538-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04538-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020409190", 
          "https://doi.org/10.1007/978-3-662-04538-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022481200051756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033388216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046929489", 
          "https://doi.org/10.1007/978-3-662-07003-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046929489", 
          "https://doi.org/10.1007/978-3-662-07003-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2015v070n01abeh004936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dam.2017.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092728320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im8557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100132514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562417060242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100166290", 
          "https://doi.org/10.1134/s1064562417060242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106884102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106884102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The Le Bars conjecture (2001) states that the binomial random graph G(n, 12) obeys the zero\u2013one law for existential monadic sentences with two first-order variables. This conjecture is disproved. Moreover, it is proved that there exists an existential monadic sentence with a single monadic variable and two first-order variables whose truth probability does not converge.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1064562418070311", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "A Disproof the Le Bars Conjecture about the Zero\u2013One Law for Existential Monadic Second-Order Sentences", 
    "pagination": "638-640", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df673dedd0b4b70536ec9c0dfe2385fe8b6de474ff02874f83b667ba05bcb2e2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562418070311"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111224428"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562418070311", 
      "https://app.dimensions.ai/details/publication/pub.1111224428"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55835_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1064562418070311"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070311'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070311'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070311'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070311'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562418070311 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2dcf46cd5fec4027a0a96c0daa01d865
4 schema:citation sg:pub.10.1007/978-3-662-04538-1
5 sg:pub.10.1007/978-3-662-07003-1
6 sg:pub.10.1134/s0001434616030032
7 sg:pub.10.1134/s1064562417060242
8 https://app.dimensions.ai/details/publication/pub.1106884102
9 https://doi.org/10.1002/9781118032718
10 https://doi.org/10.1016/0012-365x(85)90112-8
11 https://doi.org/10.1016/j.dam.2017.10.017
12 https://doi.org/10.1016/s0020-0190(00)00149-6
13 https://doi.org/10.1017/s0022481200051756
14 https://doi.org/10.1070/im8557
15 https://doi.org/10.1070/rm2015v070n01abeh004936
16 schema:datePublished 2018-11
17 schema:datePublishedReg 2018-11-01
18 schema:description The Le Bars conjecture (2001) states that the binomial random graph G(n, 12) obeys the zero–one law for existential monadic sentences with two first-order variables. This conjecture is disproved. Moreover, it is proved that there exists an existential monadic sentence with a single monadic variable and two first-order variables whose truth probability does not converge.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N7617acca548d46a99ae816633524833e
23 Nf9b81458e3974da1bfef770172eb8b1e
24 sg:journal.1136704
25 schema:name A Disproof the Le Bars Conjecture about the Zero–One Law for Existential Monadic Second-Order Sentences
26 schema:pagination 638-640
27 schema:productId N1fdba376be104343ba24deffe10e35d6
28 Na2607c409b18417d989856083eeff9b6
29 Nf5ffd41b62904682aa3468f0c3ffde7e
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224428
31 https://doi.org/10.1134/s1064562418070311
32 schema:sdDatePublished 2019-04-11T08:36
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N07add981a9eb45de8786a34e323cc29e
35 schema:url https://link.springer.com/10.1134%2FS1064562418070311
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N07add981a9eb45de8786a34e323cc29e schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1fdba376be104343ba24deffe10e35d6 schema:name dimensions_id
42 schema:value pub.1111224428
43 rdf:type schema:PropertyValue
44 N2dcf46cd5fec4027a0a96c0daa01d865 rdf:first sg:person.011152672013.96
45 rdf:rest N87c49dfc3d5f494393622e1113fcdbed
46 N7617acca548d46a99ae816633524833e schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N87c49dfc3d5f494393622e1113fcdbed rdf:first sg:person.015103671307.25
49 rdf:rest rdf:nil
50 Na2607c409b18417d989856083eeff9b6 schema:name readcube_id
51 schema:value df673dedd0b4b70536ec9c0dfe2385fe8b6de474ff02874f83b667ba05bcb2e2
52 rdf:type schema:PropertyValue
53 Nf5ffd41b62904682aa3468f0c3ffde7e schema:name doi
54 schema:value 10.1134/s1064562418070311
55 rdf:type schema:PropertyValue
56 Nf9b81458e3974da1bfef770172eb8b1e schema:volumeNumber 98
57 rdf:type schema:PublicationVolume
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136704 schema:issn 1064-5624
65 1531-8362
66 schema:name Doklady Mathematics
67 rdf:type schema:Periodical
68 sg:person.011152672013.96 schema:affiliation https://www.grid.ac/institutes/grid.448568.3
69 schema:familyName Zhukovskii
70 schema:givenName M. E.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96
72 rdf:type schema:Person
73 sg:person.015103671307.25 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
74 schema:familyName Popova
75 schema:givenName S. N.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015103671307.25
77 rdf:type schema:Person
78 sg:pub.10.1007/978-3-662-04538-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020409190
79 https://doi.org/10.1007/978-3-662-04538-1
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-3-662-07003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046929489
82 https://doi.org/10.1007/978-3-662-07003-1
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/s0001434616030032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001226749
85 https://doi.org/10.1134/s0001434616030032
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/s1064562417060242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100166290
88 https://doi.org/10.1134/s1064562417060242
89 rdf:type schema:CreativeWork
90 https://app.dimensions.ai/details/publication/pub.1106884102 schema:CreativeWork
91 https://doi.org/10.1002/9781118032718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106884102
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0012-365x(85)90112-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001660461
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.dam.2017.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092728320
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0020-0190(00)00149-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005361722
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1017/s0022481200051756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033388216
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1070/im8557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100132514
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1070/rm2015v070n01abeh004936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198484
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
106 schema:name Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.448568.3 schema:alternateName Adyghe State University
109 schema:name Caucasus Mathematical Center, Adyghe State University, 385000, Maikop, Maikop, Republic of Adygea, Russia
110 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...