On the Distribution of the Maximum k-Degrees of the Binomial Random Graph View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

M. E. Zhukovskii, I. V. Rodionov

ABSTRACT

For the maximum number Δn of common neighbors of k vertices in the random graph G(n, p), there exist functions an and σn such that Δn−anσn converges in distribution to a random variable having the standard Gumbel distribution.

PAGES

619-621

Journal

TITLE

Doklady Mathematics

ISSUE

3

VOLUME

98

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562418070268

DOI

http://dx.doi.org/10.1134/s1064562418070268

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111224423


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Adyghe State University", 
          "id": "https://www.grid.ac/institutes/grid.448568.3", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
            "Russian Presidential Academy of National Economy and Public Administration, 119571, Moscow, Russia", 
            "Caucasus Mathematical Center, Adyghe State University, 385000 Republic of Adygea, Maikop, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukovskii", 
        "givenName": "M. E.", 
        "id": "sg:person.011152672013.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
            "Faculty of Mechanics and Mathematics, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionov", 
        "givenName": "I. V.", 
        "id": "sg:person.015315746175.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315746175.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rsa.20506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004504226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1018032998", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5449-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032998", 
          "https://doi.org/10.1007/978-1-4612-5449-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5449-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018032998", 
          "https://doi.org/10.1007/978-1-4612-5449-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024081112501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020021561", 
          "https://doi.org/10.1023/a:1024081112501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(80)90054-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041872655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(81)90253-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042468397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2015v070n01abeh004936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511814068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098699402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106830575", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470277331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106830575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106884102", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118032718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106884102"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "For the maximum number \u0394n of common neighbors of k vertices in the random graph G(n, p), there exist functions an and \u03c3n such that \u0394n\u2212an\u03c3n converges in distribution to a random variable having the standard Gumbel distribution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1064562418070268", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "On the Distribution of the Maximum k-Degrees of the Binomial Random Graph", 
    "pagination": "619-621", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b346feeb5cff2fcdd3e8b8ace7699921d3f9c9cc2a1aa4c028b67a06690d6b1d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562418070268"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111224423"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562418070268", 
      "https://app.dimensions.ai/details/publication/pub.1111224423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55820_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1064562418070268"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070268'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070268'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070268'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070268'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      20 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562418070268 schema:author N5643c422fd5e40e488aa49110df485fb
2 schema:citation sg:pub.10.1007/978-1-4612-5449-2
3 sg:pub.10.1023/a:1024081112501
4 https://app.dimensions.ai/details/publication/pub.1018032998
5 https://app.dimensions.ai/details/publication/pub.1106830575
6 https://app.dimensions.ai/details/publication/pub.1106884102
7 https://doi.org/10.1002/9780470277331
8 https://doi.org/10.1002/9781118032718
9 https://doi.org/10.1002/rsa.20506
10 https://doi.org/10.1016/0012-365x(80)90054-0
11 https://doi.org/10.1016/0012-365x(81)90253-3
12 https://doi.org/10.1017/cbo9780511814068
13 https://doi.org/10.1070/rm2015v070n01abeh004936
14 schema:datePublished 2018-11
15 schema:datePublishedReg 2018-11-01
16 schema:description For the maximum number Δn of common neighbors of k vertices in the random graph G(n, p), there exist functions an and σn such that Δn−anσn converges in distribution to a random variable having the standard Gumbel distribution.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N0f42d31f56a146e799f6b781cc2f68eb
21 Nad299ec8b3674ab0ad1cfbb2d17415cb
22 sg:journal.1136704
23 schema:name On the Distribution of the Maximum k-Degrees of the Binomial Random Graph
24 schema:pagination 619-621
25 schema:productId N278236093d78418c941d21a4436a7dab
26 Ncf0238ae937946398ce030b5a976e300
27 Ne87fdd5959b6467fb5d475fbf67a4304
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224423
29 https://doi.org/10.1134/s1064562418070268
30 schema:sdDatePublished 2019-04-11T08:36
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N092b4928ae4d4fccbaa4353c8fb61f24
33 schema:url https://link.springer.com/10.1134%2FS1064562418070268
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N092b4928ae4d4fccbaa4353c8fb61f24 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N0f42d31f56a146e799f6b781cc2f68eb schema:volumeNumber 98
40 rdf:type schema:PublicationVolume
41 N278236093d78418c941d21a4436a7dab schema:name dimensions_id
42 schema:value pub.1111224423
43 rdf:type schema:PropertyValue
44 N5643c422fd5e40e488aa49110df485fb rdf:first sg:person.011152672013.96
45 rdf:rest Ncf4fcc9ec0a14c79aea8208f5f5d3fab
46 Nad299ec8b3674ab0ad1cfbb2d17415cb schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 Ncf0238ae937946398ce030b5a976e300 schema:name readcube_id
49 schema:value b346feeb5cff2fcdd3e8b8ace7699921d3f9c9cc2a1aa4c028b67a06690d6b1d
50 rdf:type schema:PropertyValue
51 Ncf4fcc9ec0a14c79aea8208f5f5d3fab rdf:first sg:person.015315746175.01
52 rdf:rest rdf:nil
53 Ne87fdd5959b6467fb5d475fbf67a4304 schema:name doi
54 schema:value 10.1134/s1064562418070268
55 rdf:type schema:PropertyValue
56 sg:journal.1136704 schema:issn 1064-5624
57 1531-8362
58 schema:name Doklady Mathematics
59 rdf:type schema:Periodical
60 sg:person.011152672013.96 schema:affiliation https://www.grid.ac/institutes/grid.448568.3
61 schema:familyName Zhukovskii
62 schema:givenName M. E.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96
64 rdf:type schema:Person
65 sg:person.015315746175.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
66 schema:familyName Rodionov
67 schema:givenName I. V.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015315746175.01
69 rdf:type schema:Person
70 sg:pub.10.1007/978-1-4612-5449-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018032998
71 https://doi.org/10.1007/978-1-4612-5449-2
72 rdf:type schema:CreativeWork
73 sg:pub.10.1023/a:1024081112501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020021561
74 https://doi.org/10.1023/a:1024081112501
75 rdf:type schema:CreativeWork
76 https://app.dimensions.ai/details/publication/pub.1018032998 schema:CreativeWork
77 https://app.dimensions.ai/details/publication/pub.1106830575 schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1106884102 schema:CreativeWork
79 https://doi.org/10.1002/9780470277331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106830575
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/9781118032718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106884102
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/rsa.20506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004504226
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0012-365x(80)90054-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041872655
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0012-365x(81)90253-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042468397
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/cbo9780511814068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098699402
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1070/rm2015v070n01abeh004936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198484
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
94 schema:name Faculty of Mechanics and Mathematics, Moscow State University, 119991, Moscow, Russia
95 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.448568.3 schema:alternateName Adyghe State University
98 schema:name Caucasus Mathematical Center, Adyghe State University, 385000 Republic of Adygea, Maikop, Russia
99 Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
100 Russian Presidential Academy of National Economy and Public Administration, 119571, Moscow, Russia
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...