Narrow Positively Graded Lie Algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

D. V. Millionshchikov

ABSTRACT

The present paper is devoted to the classification of infinite-dimensional naturally graded Lie algebras that are narrow in the sense of Zelmanov and Shalev [9]. Such Lie algebras are Lie algebras of slow linear growth. In the theory of nonlinear hyperbolic partial differential equations the notion of the characteristic Lie algebra of equation is introduced [3]. Two graded Lie algebras n1 and n2 from our list, that are positive parts of the affine Kac–Moody algebras A1(1) and A2(2), respectively, are isomophic to the characteristic Lie algebras of the sinh-Gordon and Tzitzeika equations [6]. We also note that questions relating to narrow and slowly growing Lie algebras have been extensively studied in the case of a field of positive characteristic [2]. More... »

PAGES

626-628

References to SciGraph publications

  • 1986. Cohomology of Infinite-Dimensional Lie Algebras in NONE
  • 1999-03. Narrow algebras and groups in JOURNAL OF MATHEMATICAL SCIENCES
  • Journal

    TITLE

    Doklady Mathematics

    ISSUE

    3

    VOLUME

    98

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1064562418070244

    DOI

    http://dx.doi.org/10.1134/s1064562418070244

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111224421


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Millionshchikov", 
            "givenName": "D. V.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02366350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012269638", 
              "https://doi.org/10.1007/bf02366350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02366350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012269638", 
              "https://doi.org/10.1007/bf02366350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-8765-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015826073", 
              "https://doi.org/10.1007/978-1-4684-8765-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-8765-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015826073", 
              "https://doi.org/10.1007/978-1-4684-8765-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-97-02005-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044559630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm9744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083437920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/trans2/212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098711289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511626234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098791356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm9805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100523398"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "The present paper is devoted to the classification of infinite-dimensional naturally graded Lie algebras that are narrow in the sense of Zelmanov and Shalev [9]. Such Lie algebras are Lie algebras of slow linear growth. In the theory of nonlinear hyperbolic partial differential equations the notion of the characteristic Lie algebra of equation is introduced [3]. Two graded Lie algebras n1 and n2 from our list, that are positive parts of the affine Kac\u2013Moody algebras A1(1) and A2(2), respectively, are isomophic to the characteristic Lie algebras of the sinh-Gordon and Tzitzeika equations [6]. We also note that questions relating to narrow and slowly growing Lie algebras have been extensively studied in the case of a field of positive characteristic [2].", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1134/s1064562418070244", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136704", 
            "issn": [
              "1064-5624", 
              "1531-8362"
            ], 
            "name": "Doklady Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "98"
          }
        ], 
        "name": "Narrow Positively Graded Lie Algebras", 
        "pagination": "626-628", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "822a5a49dd82a151e793e8667de4366539f0edfae0f51079cc309fd3178b39cb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1064562418070244"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111224421"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1064562418070244", 
          "https://app.dimensions.ai/details/publication/pub.1111224421"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55862_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1064562418070244"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070244'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070244'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070244'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562418070244'


     

    This table displays all metadata directly associated to this object as RDF triples.

    86 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1064562418070244 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndf61f67203fb454da723e8069bd1c062
    4 schema:citation sg:pub.10.1007/978-1-4684-8765-7
    5 sg:pub.10.1007/bf02366350
    6 https://doi.org/10.1017/cbo9780511626234
    7 https://doi.org/10.1070/rm9744
    8 https://doi.org/10.1070/rm9805
    9 https://doi.org/10.1090/s0002-9947-97-02005-9
    10 https://doi.org/10.1090/trans2/212
    11 https://doi.org/10.24033/bsmf.1695
    12 schema:datePublished 2018-11
    13 schema:datePublishedReg 2018-11-01
    14 schema:description The present paper is devoted to the classification of infinite-dimensional naturally graded Lie algebras that are narrow in the sense of Zelmanov and Shalev [9]. Such Lie algebras are Lie algebras of slow linear growth. In the theory of nonlinear hyperbolic partial differential equations the notion of the characteristic Lie algebra of equation is introduced [3]. Two graded Lie algebras n1 and n2 from our list, that are positive parts of the affine Kac–Moody algebras A1(1) and A2(2), respectively, are isomophic to the characteristic Lie algebras of the sinh-Gordon and Tzitzeika equations [6]. We also note that questions relating to narrow and slowly growing Lie algebras have been extensively studied in the case of a field of positive characteristic [2].
    15 schema:genre non_research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N1dc59cd04cd540b7b0af656e43735d1e
    19 Nc58b472c9f114fe8a47847379805d15c
    20 sg:journal.1136704
    21 schema:name Narrow Positively Graded Lie Algebras
    22 schema:pagination 626-628
    23 schema:productId Na845b387757647fc97b7a4b44c7635d3
    24 Nc8a5bcebcd724d608e098d6636824216
    25 Nf6bbbd552fcf4b50b733635670c8bc99
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224421
    27 https://doi.org/10.1134/s1064562418070244
    28 schema:sdDatePublished 2019-04-11T08:37
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N595be56074624e12a3b2fd8efa655d84
    31 schema:url https://link.springer.com/10.1134%2FS1064562418070244
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1dc59cd04cd540b7b0af656e43735d1e schema:volumeNumber 98
    36 rdf:type schema:PublicationVolume
    37 N595be56074624e12a3b2fd8efa655d84 schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 Na845b387757647fc97b7a4b44c7635d3 schema:name doi
    40 schema:value 10.1134/s1064562418070244
    41 rdf:type schema:PropertyValue
    42 Nc58b472c9f114fe8a47847379805d15c schema:issueNumber 3
    43 rdf:type schema:PublicationIssue
    44 Nc8a5bcebcd724d608e098d6636824216 schema:name dimensions_id
    45 schema:value pub.1111224421
    46 rdf:type schema:PropertyValue
    47 Ndf61f67203fb454da723e8069bd1c062 rdf:first Nf54744e1f5344fee9ea70c239c3c11d9
    48 rdf:rest rdf:nil
    49 Nf54744e1f5344fee9ea70c239c3c11d9 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    50 schema:familyName Millionshchikov
    51 schema:givenName D. V.
    52 rdf:type schema:Person
    53 Nf6bbbd552fcf4b50b733635670c8bc99 schema:name readcube_id
    54 schema:value 822a5a49dd82a151e793e8667de4366539f0edfae0f51079cc309fd3178b39cb
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136704 schema:issn 1064-5624
    63 1531-8362
    64 schema:name Doklady Mathematics
    65 rdf:type schema:Periodical
    66 sg:pub.10.1007/978-1-4684-8765-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015826073
    67 https://doi.org/10.1007/978-1-4684-8765-7
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/bf02366350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012269638
    70 https://doi.org/10.1007/bf02366350
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1017/cbo9780511626234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098791356
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1070/rm9744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083437920
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1070/rm9805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100523398
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1090/s0002-9947-97-02005-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559630
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1090/trans2/212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098711289
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.24033/bsmf.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660659
    83 rdf:type schema:CreativeWork
    84 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    85 schema:name Steklov Mathematical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
    86 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...