Spectra of first-order formulas with a low quantifier depth and a small number of quantifier alternations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

M. E. Zhukovskii, A. D. Matushkin

ABSTRACT

Spectra of first-order formulas are studied. The spectrum of a first-order formula is the set of all positive α such that either this formula is true for the random graph G(n, n−α) with an asymptotic probability being neither 0 nor 1 or the limit does not exist. It is well known that there exists a first-order formula with an infinite spectrum. The minimum number of quantifier alternations in such a formula is found. More... »

PAGES

326-328

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562417040093

DOI

http://dx.doi.org/10.1134/s1064562417040093

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091491280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tambov State University, Tambov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446191.f", 
          "name": [
            "Tambov State University, Tambov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukovskii", 
        "givenName": "M. E.", 
        "id": "sg:person.011152672013.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matushkin", 
        "givenName": "A. D.", 
        "id": "sg:person.015207162751.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015207162751.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02122699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004686170", 
          "https://doi.org/10.1007/bf02122699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562416050240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017184157", 
          "https://doi.org/10.1134/s1064562416050240"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "Spectra of first-order formulas are studied. The spectrum of a first-order formula is the set of all positive \u03b1 such that either this formula is true for the random graph G(n, n\u2212\u03b1) with an asymptotic probability being neither 0 nor 1 or the limit does not exist. It is well known that there exists a first-order formula with an infinite spectrum. The minimum number of quantifier alternations in such a formula is found.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1064562417040093", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "96"
      }
    ], 
    "keywords": [
      "small number", 
      "number", 
      "alternation", 
      "probability", 
      "spectra", 
      "formula", 
      "limit", 
      "depth", 
      "minimum number", 
      "set", 
      "random graphs", 
      "graph", 
      "asymptotic probability", 
      "infinite spectrum", 
      "quantifier alternations", 
      "first-order formulas", 
      "quantifier depth", 
      "low quantifier depth"
    ], 
    "name": "Spectra of first-order formulas with a low quantifier depth and a small number of quantifier alternations", 
    "pagination": "326-328", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091491280"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562417040093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562417040093", 
      "https://app.dimensions.ai/details/publication/pub.1091491280"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_739.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1064562417040093"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562417040093'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562417040093'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562417040093'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562417040093'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      22 PREDICATES      46 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562417040093 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N021674dd8e694431bf599f8ab8f8df2e
4 schema:citation sg:pub.10.1007/bf02122699
5 sg:pub.10.1134/s1064562416050240
6 schema:datePublished 2017-07
7 schema:datePublishedReg 2017-07-01
8 schema:description Spectra of first-order formulas are studied. The spectrum of a first-order formula is the set of all positive α such that either this formula is true for the random graph G(n, n−α) with an asymptotic probability being neither 0 nor 1 or the limit does not exist. It is well known that there exists a first-order formula with an infinite spectrum. The minimum number of quantifier alternations in such a formula is found.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N60728d14d27b4fe9ba808b32c3166178
13 Nfdc9fdd8901b48c79f4c1cef7bcd088a
14 sg:journal.1136704
15 schema:keywords alternation
16 asymptotic probability
17 depth
18 first-order formulas
19 formula
20 graph
21 infinite spectrum
22 limit
23 low quantifier depth
24 minimum number
25 number
26 probability
27 quantifier alternations
28 quantifier depth
29 random graphs
30 set
31 small number
32 spectra
33 schema:name Spectra of first-order formulas with a low quantifier depth and a small number of quantifier alternations
34 schema:pagination 326-328
35 schema:productId N782c2c585a53408c9ed3acf30b311472
36 Nc7c45f24e96748f5925df5b0340bccfe
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091491280
38 https://doi.org/10.1134/s1064562417040093
39 schema:sdDatePublished 2021-12-01T19:39
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd2d745d052c049feb48104ce54c96ca5
42 schema:url https://doi.org/10.1134/s1064562417040093
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N021674dd8e694431bf599f8ab8f8df2e rdf:first sg:person.011152672013.96
47 rdf:rest Nb70bd72820fd414fb12f69359da0931b
48 N60728d14d27b4fe9ba808b32c3166178 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 N782c2c585a53408c9ed3acf30b311472 schema:name dimensions_id
51 schema:value pub.1091491280
52 rdf:type schema:PropertyValue
53 Nb70bd72820fd414fb12f69359da0931b rdf:first sg:person.015207162751.47
54 rdf:rest rdf:nil
55 Nc7c45f24e96748f5925df5b0340bccfe schema:name doi
56 schema:value 10.1134/s1064562417040093
57 rdf:type schema:PropertyValue
58 Nd2d745d052c049feb48104ce54c96ca5 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nfdc9fdd8901b48c79f4c1cef7bcd088a schema:volumeNumber 96
61 rdf:type schema:PublicationVolume
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
66 schema:name Statistics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136704 schema:issn 1064-5624
69 1531-8362
70 schema:name Doklady Mathematics
71 schema:publisher Pleiades Publishing
72 rdf:type schema:Periodical
73 sg:person.011152672013.96 schema:affiliation grid-institutes:grid.446191.f
74 schema:familyName Zhukovskii
75 schema:givenName M. E.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96
77 rdf:type schema:Person
78 sg:person.015207162751.47 schema:affiliation grid-institutes:grid.18763.3b
79 schema:familyName Matushkin
80 schema:givenName A. D.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015207162751.47
82 rdf:type schema:Person
83 sg:pub.10.1007/bf02122699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004686170
84 https://doi.org/10.1007/bf02122699
85 rdf:type schema:CreativeWork
86 sg:pub.10.1134/s1064562416050240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017184157
87 https://doi.org/10.1134/s1064562416050240
88 rdf:type schema:CreativeWork
89 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
90 schema:name Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
91 rdf:type schema:Organization
92 grid-institutes:grid.446191.f schema:alternateName Tambov State University, Tambov, Russia
93 schema:name Tambov State University, Tambov, Russia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...