Spectra of short monadic sentences about sparse random graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

M. E. Zhukovskii, A. B. Kupavskii

ABSTRACT

A random graph G(n, p) is said to obey the (monadic) zero–one k-law if, for any monadic formula of quantifier depth k, the probability that it is true for the random graph tends to either zero or one. In this paper, following J. Spencer and S. Shelah, we consider the case p = n−α. It is proved that the least k for which there are infinitely many α such that a random graph does not obey the zero–one k-law is equal to 4. More... »

PAGES

60-61

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562417010227

DOI

http://dx.doi.org/10.1134/s1064562417010227

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084938833


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RUDN University, 117198, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77642.30", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
            "RUDN University, 117198, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukovskii", 
        "givenName": "M. E.", 
        "id": "sg:person.011152672013.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Grenoble-Alpes, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.450307.5", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia", 
            "University Grenoble-Alpes, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kupavskii", 
        "givenName": "A. B.", 
        "id": "sg:person.012436071077.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012436071077.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04538-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020409190", 
          "https://doi.org/10.1007/978-3-662-04538-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-56992-8_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048831180", 
          "https://doi.org/10.1007/3-540-56992-8_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02122699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004686170", 
          "https://doi.org/10.1007/bf02122699"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "A random graph G(n, p) is said to obey the (monadic) zero\u2013one k-law if, for any monadic formula of quantifier depth k, the probability that it is true for the random graph tends to either zero or one. In this paper, following J. Spencer and S. Shelah, we consider the case p = n\u2212\u03b1. It is proved that the least k for which there are infinitely many \u03b1 such that a random graph does not obey the zero\u2013one k-law is equal to 4.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1064562417010227", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "keywords": [
      "random graphs", 
      "sparse random graphs", 
      "case p", 
      "monadic sentences", 
      "graph", 
      "law", 
      "Shelah", 
      "probability", 
      "formula", 
      "sentences", 
      "Spencer", 
      "paper", 
      "spectra", 
      "monadic formula", 
      "depth k", 
      "quantifier depth k", 
      "short monadic sentences"
    ], 
    "name": "Spectra of short monadic sentences about sparse random graphs", 
    "pagination": "60-61", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084938833"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562417010227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562417010227", 
      "https://app.dimensions.ai/details/publication/pub.1084938833"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_736.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1064562417010227"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562417010227'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562417010227'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562417010227'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562417010227'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      22 PREDICATES      46 URIs      35 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562417010227 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N733723cce42a420f9670bef032a991fa
4 schema:citation sg:pub.10.1007/3-540-56992-8_26
5 sg:pub.10.1007/978-3-662-04538-1
6 sg:pub.10.1007/bf02122699
7 schema:datePublished 2017-01
8 schema:datePublishedReg 2017-01-01
9 schema:description A random graph G(n, p) is said to obey the (monadic) zero–one k-law if, for any monadic formula of quantifier depth k, the probability that it is true for the random graph tends to either zero or one. In this paper, following J. Spencer and S. Shelah, we consider the case p = n−α. It is proved that the least k for which there are infinitely many α such that a random graph does not obey the zero–one k-law is equal to 4.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nad3e3d5b91b1425c8094afb6609c3b55
14 Ne2bbabd8cd91425ca507498ca55ff63d
15 sg:journal.1136704
16 schema:keywords Shelah
17 Spencer
18 case p
19 depth k
20 formula
21 graph
22 law
23 monadic formula
24 monadic sentences
25 paper
26 probability
27 quantifier depth k
28 random graphs
29 sentences
30 short monadic sentences
31 sparse random graphs
32 spectra
33 schema:name Spectra of short monadic sentences about sparse random graphs
34 schema:pagination 60-61
35 schema:productId N262d2cfa55a4466e9dbaff3b2b9f4c41
36 N2b28de4036b34b6e888fe8c50c78aacc
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084938833
38 https://doi.org/10.1134/s1064562417010227
39 schema:sdDatePublished 2021-12-01T19:39
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N01276d812d3747f89cd3b78166920faa
42 schema:url https://doi.org/10.1134/s1064562417010227
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N01276d812d3747f89cd3b78166920faa schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N262d2cfa55a4466e9dbaff3b2b9f4c41 schema:name doi
49 schema:value 10.1134/s1064562417010227
50 rdf:type schema:PropertyValue
51 N2b28de4036b34b6e888fe8c50c78aacc schema:name dimensions_id
52 schema:value pub.1084938833
53 rdf:type schema:PropertyValue
54 N733723cce42a420f9670bef032a991fa rdf:first sg:person.011152672013.96
55 rdf:rest N91f056f35567422c83ed47fd3376b14e
56 N91f056f35567422c83ed47fd3376b14e rdf:first sg:person.012436071077.42
57 rdf:rest rdf:nil
58 Nad3e3d5b91b1425c8094afb6609c3b55 schema:volumeNumber 95
59 rdf:type schema:PublicationVolume
60 Ne2bbabd8cd91425ca507498ca55ff63d schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136704 schema:issn 1064-5624
69 1531-8362
70 schema:name Doklady Mathematics
71 schema:publisher Pleiades Publishing
72 rdf:type schema:Periodical
73 sg:person.011152672013.96 schema:affiliation grid-institutes:grid.77642.30
74 schema:familyName Zhukovskii
75 schema:givenName M. E.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96
77 rdf:type schema:Person
78 sg:person.012436071077.42 schema:affiliation grid-institutes:grid.450307.5
79 schema:familyName Kupavskii
80 schema:givenName A. B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012436071077.42
82 rdf:type schema:Person
83 sg:pub.10.1007/3-540-56992-8_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048831180
84 https://doi.org/10.1007/3-540-56992-8_26
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-3-662-04538-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020409190
87 https://doi.org/10.1007/978-3-662-04538-1
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02122699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004686170
90 https://doi.org/10.1007/bf02122699
91 rdf:type schema:CreativeWork
92 grid-institutes:grid.450307.5 schema:alternateName University Grenoble-Alpes, Grenoble, France
93 schema:name Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
94 University Grenoble-Alpes, Grenoble, France
95 rdf:type schema:Organization
96 grid-institutes:grid.77642.30 schema:alternateName RUDN University, 117198, Moscow, Russia
97 schema:name Moscow Institute of Physics and Technology (State University), 141700, Dolgoprudnyi, Moscow oblast, Russia
98 RUDN University, 117198, Moscow, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...