Normal form for the KdV–Burgers equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

S. A. Kashchenko

ABSTRACT

The local dynamics of the KdV–Burgers equation with periodic boundary conditions is studied. A special nonlinear partial differential equation is derived that plays the role of a normal form, i.e., in the first approximation, it determines the behavior of all solutions of the original boundary value problem with initial conditions from a sufficiently small neighborhood of equilibrium. More... »

PAGES

331-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562416030170

DOI

http://dx.doi.org/10.1134/s1064562416030170

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021494274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia", 
            "National Research Nuclear University \u201cMEPhI,\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kashchenko", 
        "givenName": "S. A.", 
        "id": "sg:person.014005151473.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005151473.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/14786449508620739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021858340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2008.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026563139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562410060104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255696", 
          "https://doi.org/10.1134/s1064562410060104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2156(08)70100-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045913525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562412060208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052733614", 
          "https://doi.org/10.1134/s1064562412060208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021812749600059x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062958324"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "The local dynamics of the KdV\u2013Burgers equation with periodic boundary conditions is studied. A special nonlinear partial differential equation is derived that plays the role of a normal form, i.e., in the first approximation, it determines the behavior of all solutions of the original boundary value problem with initial conditions from a sufficiently small neighborhood of equilibrium.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s1064562416030170", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "Normal form for the KdV\u2013Burgers equation", 
    "pagination": "331-333", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6668d174d65802c1d968eb6ae09ed0e2a9fafea44a7da03d7b40ae119813822a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562416030170"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021494274"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562416030170", 
      "https://app.dimensions.ai/details/publication/pub.1021494274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88251_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1064562416030170"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562416030170'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562416030170'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562416030170'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562416030170'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562416030170 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N57b81d608e864e44854782b710c671cc
4 schema:citation sg:pub.10.1134/s1064562410060104
5 sg:pub.10.1134/s1064562412060208
6 https://doi.org/10.1016/j.cnsns.2008.09.020
7 https://doi.org/10.1016/s0065-2156(08)70100-5
8 https://doi.org/10.1080/14786449508620739
9 https://doi.org/10.1142/s021812749600059x
10 schema:datePublished 2016-05
11 schema:datePublishedReg 2016-05-01
12 schema:description The local dynamics of the KdV–Burgers equation with periodic boundary conditions is studied. A special nonlinear partial differential equation is derived that plays the role of a normal form, i.e., in the first approximation, it determines the behavior of all solutions of the original boundary value problem with initial conditions from a sufficiently small neighborhood of equilibrium.
13 schema:genre non_research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N069f779c293c490ab8acffe573e2cb4f
17 Ned9e602aecc242028c6c5650ff2fea61
18 sg:journal.1136704
19 schema:name Normal form for the KdV–Burgers equation
20 schema:pagination 331-333
21 schema:productId N42caa45d2a6c4282b77a2e702f491f5c
22 N4f51cd7509f34a4e9c4684c49b2a858c
23 Nc4a29c8299c9497f890d672df352494f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021494274
25 https://doi.org/10.1134/s1064562416030170
26 schema:sdDatePublished 2019-04-11T13:11
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N0c5d7030dac642f8bfe5497e8875b98a
29 schema:url https://link.springer.com/10.1134%2FS1064562416030170
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N069f779c293c490ab8acffe573e2cb4f schema:volumeNumber 93
34 rdf:type schema:PublicationVolume
35 N0c5d7030dac642f8bfe5497e8875b98a schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N42caa45d2a6c4282b77a2e702f491f5c schema:name readcube_id
38 schema:value 6668d174d65802c1d968eb6ae09ed0e2a9fafea44a7da03d7b40ae119813822a
39 rdf:type schema:PropertyValue
40 N4f51cd7509f34a4e9c4684c49b2a858c schema:name dimensions_id
41 schema:value pub.1021494274
42 rdf:type schema:PropertyValue
43 N57b81d608e864e44854782b710c671cc rdf:first sg:person.014005151473.05
44 rdf:rest rdf:nil
45 Nc4a29c8299c9497f890d672df352494f schema:name doi
46 schema:value 10.1134/s1064562416030170
47 rdf:type schema:PropertyValue
48 Ned9e602aecc242028c6c5650ff2fea61 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136704 schema:issn 1064-5624
57 1531-8362
58 schema:name Doklady Mathematics
59 rdf:type schema:Periodical
60 sg:person.014005151473.05 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
61 schema:familyName Kashchenko
62 schema:givenName S. A.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005151473.05
64 rdf:type schema:Person
65 sg:pub.10.1134/s1064562410060104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255696
66 https://doi.org/10.1134/s1064562410060104
67 rdf:type schema:CreativeWork
68 sg:pub.10.1134/s1064562412060208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052733614
69 https://doi.org/10.1134/s1064562412060208
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/j.cnsns.2008.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026563139
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/s0065-2156(08)70100-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045913525
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1080/14786449508620739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021858340
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1142/s021812749600059x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062958324
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
80 schema:name National Research Nuclear University “MEPhI,”, Kashirskoe sh. 31, 115409, Moscow, Russia
81 Yaroslavl State University, ul. Sovetskaya 14, 150000, Yaroslavl, Russia
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...