On limit points of spectra of the random graph first-order properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

M. E. Zhukovskii

ABSTRACT

New bounds on the minimum and maximum limit points of spectra of first-order properties of the Erdös–Rényi random graph are obtained. These results are used to improve bounds on the minimal quantifier depths of first-order formulas with infinite spectra. Moreover, we prove that there are no limit points of the spectra in the interval (1–21–k, 1). More... »

PAGES

719-722

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064562415060265

DOI

http://dx.doi.org/10.1134/s1064562415060265

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024058972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700, Dolgoprudnyi, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700, Dolgoprudnyi, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukovskii", 
        "givenName": "M. E.", 
        "id": "sg:person.011152672013.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1064562411010054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020949900", 
          "https://doi.org/10.1134/s1064562411010054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02122699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004686170", 
          "https://doi.org/10.1007/bf02122699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562414010062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018529461", 
          "https://doi.org/10.1134/s1064562414010062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562415040304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039314764", 
          "https://doi.org/10.1134/s1064562415040304"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "New bounds on the minimum and maximum limit points of spectra of first-order properties of the Erd\u00f6s\u2013R\u00e9nyi random graph are obtained. These results are used to improve bounds on the minimal quantifier depths of first-order formulas with infinite spectra. Moreover, we prove that there are no limit points of the spectra in the interval (1\u201321\u2013k, 1).", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1064562415060265", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136704", 
        "issn": [
          "1064-5624", 
          "1531-8362"
        ], 
        "name": "Doklady Mathematics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "keywords": [
      "intervals", 
      "point", 
      "results", 
      "spectra", 
      "properties", 
      "depth", 
      "formula", 
      "limit point", 
      "Erd\u00f6s-R\u00e9nyi random graphs", 
      "new bounds", 
      "bounds", 
      "first-order properties", 
      "random graphs", 
      "first-order formulas", 
      "infinite spectrum", 
      "graph", 
      "quantifier depth", 
      "maximum limit points", 
      "minimal quantifier depths", 
      "random graph first-order properties", 
      "graph first-order properties"
    ], 
    "name": "On limit points of spectra of the random graph first-order properties", 
    "pagination": "719-722", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024058972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064562415060265"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064562415060265", 
      "https://app.dimensions.ai/details/publication/pub.1024058972"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_658.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1064562415060265"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064562415060265'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064562415060265'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064562415060265'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064562415060265'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      22 PREDICATES      51 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064562415060265 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc43f232322474d2c8b9511efeb8f6ef4
4 schema:citation sg:pub.10.1007/bf02122699
5 sg:pub.10.1134/s1064562411010054
6 sg:pub.10.1134/s1064562414010062
7 sg:pub.10.1134/s1064562415040304
8 schema:datePublished 2015-11
9 schema:datePublishedReg 2015-11-01
10 schema:description New bounds on the minimum and maximum limit points of spectra of first-order properties of the Erdös–Rényi random graph are obtained. These results are used to improve bounds on the minimal quantifier depths of first-order formulas with infinite spectra. Moreover, we prove that there are no limit points of the spectra in the interval (1–21–k, 1).
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1abd794daa3d41f3bf29a6a5360a69af
15 N38d0a8a4ee954052ba814a71328a9fd6
16 sg:journal.1136704
17 schema:keywords Erdös-Rényi random graphs
18 bounds
19 depth
20 first-order formulas
21 first-order properties
22 formula
23 graph
24 graph first-order properties
25 infinite spectrum
26 intervals
27 limit point
28 maximum limit points
29 minimal quantifier depths
30 new bounds
31 point
32 properties
33 quantifier depth
34 random graph first-order properties
35 random graphs
36 results
37 spectra
38 schema:name On limit points of spectra of the random graph first-order properties
39 schema:pagination 719-722
40 schema:productId N0ae81ecf794d4f7b89f3946314c1ce78
41 N57737b9c5bd34a1a86c13c3df520808b
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024058972
43 https://doi.org/10.1134/s1064562415060265
44 schema:sdDatePublished 2021-12-01T19:33
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N4e27bb2fcb144cae95108bc9cb316961
47 schema:url https://doi.org/10.1134/s1064562415060265
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0ae81ecf794d4f7b89f3946314c1ce78 schema:name doi
52 schema:value 10.1134/s1064562415060265
53 rdf:type schema:PropertyValue
54 N1abd794daa3d41f3bf29a6a5360a69af schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N38d0a8a4ee954052ba814a71328a9fd6 schema:volumeNumber 92
57 rdf:type schema:PublicationVolume
58 N4e27bb2fcb144cae95108bc9cb316961 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N57737b9c5bd34a1a86c13c3df520808b schema:name dimensions_id
61 schema:value pub.1024058972
62 rdf:type schema:PropertyValue
63 Nc43f232322474d2c8b9511efeb8f6ef4 rdf:first sg:person.011152672013.96
64 rdf:rest rdf:nil
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
69 schema:name Statistics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136704 schema:issn 1064-5624
72 1531-8362
73 schema:name Doklady Mathematics
74 schema:publisher Pleiades Publishing
75 rdf:type schema:Periodical
76 sg:person.011152672013.96 schema:affiliation grid-institutes:grid.18763.3b
77 schema:familyName Zhukovskii
78 schema:givenName M. E.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152672013.96
80 rdf:type schema:Person
81 sg:pub.10.1007/bf02122699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004686170
82 https://doi.org/10.1007/bf02122699
83 rdf:type schema:CreativeWork
84 sg:pub.10.1134/s1064562411010054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020949900
85 https://doi.org/10.1134/s1064562411010054
86 rdf:type schema:CreativeWork
87 sg:pub.10.1134/s1064562414010062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018529461
88 https://doi.org/10.1134/s1064562414010062
89 rdf:type schema:CreativeWork
90 sg:pub.10.1134/s1064562415040304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039314764
91 https://doi.org/10.1134/s1064562415040304
92 rdf:type schema:CreativeWork
93 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700, Dolgoprudnyi, Moscow oblast, Russia
94 schema:name Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700, Dolgoprudnyi, Moscow oblast, Russia
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...