Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05-21

AUTHORS

M. V. Semenov, I. K. Kravchenko, V. M. Semenov, T. V. Kuznetsova, L. E. Dulov, S. N. Udal’tsov, A. L. Stepanov

ABSTRACT

The flux rates of carbon dioxide, methane, and nitrous oxide in the soils on autonomous, transitional, transitional-accumulative, and accumulative positions of a catena on the Oka River’s right bank (Moscow oblast) were assessed using the chamber method. The lowest rate of C-CO2 emission (18.8–29.8 mg/m2 per hour) was found for the gray forest soil in the autonomous position, and the highest rate (52.4–66.1 mg/m2 per hour) was found for the alluvial meadow soil of the accumulative landscape. In the summer, the uptake of methane from the atmosphere exceeded its release from the soil at all the points of the catena (9–38 μg/m2 per hour). The highest rate of the C-CH4 uptake was observed for the soil in the transitional position. In the fall, the soils in the autonomous, transitional, and transitional-accumulative positions served as a sink of C-CH4, and the soil of the accumulative position was a source of methane emission. The rate of the N-N2O emission from the catena soils increased when going from the autonomous position to the accumulative one (0.41–11.2 μg/m2 per hour). The spatial variation of the C-CO2, C-CH4, and N-N2O fluxes within the catena was 33, 172, and 138%, respectively. The upper (0- to 10-cm) soil layer made the major contribution to the emission of carbon dioxide. This soil layer was characterized by its C-CH4 uptake, and the emission of methane was typical for the deeper (0- to 20-cm) layer. The layers deeper than 10 and 20 cm emitted more N-N2O than the surface layer. More... »

PAGES

541-549

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1064229310050078

DOI

http://dx.doi.org/10.1134/s1064229310050078

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002342924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Soil Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "M. V.", 
        "id": "sg:person.011267375467.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267375467.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kravchenko", 
        "givenName": "I. K.", 
        "id": "sg:person.0623173176.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623173176.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.470117.4", 
          "name": [
            "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "V. M.", 
        "id": "sg:person.014656331171.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656331171.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.470117.4", 
          "name": [
            "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "T. V.", 
        "id": "sg:person.014277255341.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014277255341.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dulov", 
        "givenName": "L. E.", 
        "id": "sg:person.0722415347.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722415347.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.470117.4", 
          "name": [
            "Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Udal\u2019tsov", 
        "givenName": "S. N.", 
        "id": "sg:person.01056214622.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056214622.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepanov", 
        "givenName": "A. L.", 
        "id": "sg:person.01326304465.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326304465.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11104-004-0483-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050354526", 
          "https://doi.org/10.1007/s11104-004-0483-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-005-0261-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002000088", 
          "https://doi.org/10.1007/s00442-005-0261-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00248-004-0164-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005466841", 
          "https://doi.org/10.1007/s00248-004-0164-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006244819642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031172448", 
          "https://doi.org/10.1023/a:1006244819642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05-21", 
    "datePublishedReg": "2010-05-21", 
    "description": "The flux rates of carbon dioxide, methane, and nitrous oxide in the soils on autonomous, transitional, transitional-accumulative, and accumulative positions of a catena on the Oka River\u2019s right bank (Moscow oblast) were assessed using the chamber method. The lowest rate of C-CO2 emission (18.8\u201329.8 mg/m2 per hour) was found for the gray forest soil in the autonomous position, and the highest rate (52.4\u201366.1 mg/m2 per hour) was found for the alluvial meadow soil of the accumulative landscape. In the summer, the uptake of methane from the atmosphere exceeded its release from the soil at all the points of the catena (9\u201338 \u03bcg/m2 per hour). The highest rate of the C-CH4 uptake was observed for the soil in the transitional position. In the fall, the soils in the autonomous, transitional, and transitional-accumulative positions served as a sink of C-CH4, and the soil of the accumulative position was a source of methane emission. The rate of the N-N2O emission from the catena soils increased when going from the autonomous position to the accumulative one (0.41\u201311.2 \u03bcg/m2 per hour). The spatial variation of the C-CO2, C-CH4, and N-N2O fluxes within the catena was 33, 172, and 138%, respectively. The upper (0- to 10-cm) soil layer made the major contribution to the emission of carbon dioxide. This soil layer was characterized by its C-CH4 uptake, and the emission of methane was typical for the deeper (0- to 20-cm) layer. The layers deeper than 10 and 20 cm emitted more N-N2O than the surface layer.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1064229310050078", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136086", 
        "issn": [
          "0032-180X", 
          "1064-2293"
        ], 
        "name": "Eurasian Soil Science", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "accumulative positions", 
      "CH4 uptake", 
      "soil layer", 
      "gray forest soil", 
      "upper soil layer", 
      "alluvial meadow soils", 
      "nitrous oxide fluxes", 
      "uptake of methane", 
      "emission of methane", 
      "right bank", 
      "accumulative landscapes", 
      "forest soil", 
      "meadow soil", 
      "N2O emissions", 
      "oxide fluxes", 
      "autonomous position", 
      "carbon dioxide", 
      "Oka River", 
      "soil", 
      "methane emissions", 
      "chamber method", 
      "spatial variation", 
      "nitrous oxide", 
      "catena", 
      "flux rates", 
      "transitional position", 
      "CO2 emissions", 
      "deeper layers", 
      "CH4", 
      "surface layer", 
      "methane", 
      "emission", 
      "landscape", 
      "uptake", 
      "N2O", 
      "River", 
      "high rate", 
      "sink", 
      "flux", 
      "banks", 
      "dioxide", 
      "summer", 
      "CO2", 
      "major contribution", 
      "lower rates", 
      "layer", 
      "variation", 
      "atmosphere", 
      "rate", 
      "source", 
      "contribution", 
      "fall", 
      "release", 
      "position", 
      "oxide", 
      "point", 
      "method", 
      "Oka River\u2019s right bank", 
      "River\u2019s right bank", 
      "transitional-accumulative positions", 
      "N-N2O fluxes"
    ], 
    "name": "Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast)", 
    "pagination": "541-549", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002342924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1064229310050078"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1064229310050078", 
      "https://app.dimensions.ai/details/publication/pub.1002342924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1064229310050078"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1064229310050078'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1064229310050078'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1064229310050078'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1064229310050078'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      22 PREDICATES      90 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1064229310050078 schema:about anzsrc-for:05
2 anzsrc-for:0503
3 schema:author N830b323791934e08a234cccf78d8051e
4 schema:citation sg:pub.10.1007/s00248-004-0164-x
5 sg:pub.10.1007/s00442-005-0261-7
6 sg:pub.10.1007/s11104-004-0483-1
7 sg:pub.10.1023/a:1006244819642
8 schema:datePublished 2010-05-21
9 schema:datePublishedReg 2010-05-21
10 schema:description The flux rates of carbon dioxide, methane, and nitrous oxide in the soils on autonomous, transitional, transitional-accumulative, and accumulative positions of a catena on the Oka River’s right bank (Moscow oblast) were assessed using the chamber method. The lowest rate of C-CO2 emission (18.8–29.8 mg/m2 per hour) was found for the gray forest soil in the autonomous position, and the highest rate (52.4–66.1 mg/m2 per hour) was found for the alluvial meadow soil of the accumulative landscape. In the summer, the uptake of methane from the atmosphere exceeded its release from the soil at all the points of the catena (9–38 μg/m2 per hour). The highest rate of the C-CH4 uptake was observed for the soil in the transitional position. In the fall, the soils in the autonomous, transitional, and transitional-accumulative positions served as a sink of C-CH4, and the soil of the accumulative position was a source of methane emission. The rate of the N-N2O emission from the catena soils increased when going from the autonomous position to the accumulative one (0.41–11.2 μg/m2 per hour). The spatial variation of the C-CO2, C-CH4, and N-N2O fluxes within the catena was 33, 172, and 138%, respectively. The upper (0- to 10-cm) soil layer made the major contribution to the emission of carbon dioxide. This soil layer was characterized by its C-CH4 uptake, and the emission of methane was typical for the deeper (0- to 20-cm) layer. The layers deeper than 10 and 20 cm emitted more N-N2O than the surface layer.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N871039707e53475ba01fccfaba0c63d3
15 Nebb5b52d4fd940e1bce96b93d7b0b6fe
16 sg:journal.1136086
17 schema:keywords CH4
18 CH4 uptake
19 CO2
20 CO2 emissions
21 N-N2O fluxes
22 N2O
23 N2O emissions
24 Oka River
25 Oka River’s right bank
26 River
27 River’s right bank
28 accumulative landscapes
29 accumulative positions
30 alluvial meadow soils
31 atmosphere
32 autonomous position
33 banks
34 carbon dioxide
35 catena
36 chamber method
37 contribution
38 deeper layers
39 dioxide
40 emission
41 emission of methane
42 fall
43 flux
44 flux rates
45 forest soil
46 gray forest soil
47 high rate
48 landscape
49 layer
50 lower rates
51 major contribution
52 meadow soil
53 methane
54 methane emissions
55 method
56 nitrous oxide
57 nitrous oxide fluxes
58 oxide
59 oxide fluxes
60 point
61 position
62 rate
63 release
64 right bank
65 sink
66 soil
67 soil layer
68 source
69 spatial variation
70 summer
71 surface layer
72 transitional position
73 transitional-accumulative positions
74 upper soil layer
75 uptake
76 uptake of methane
77 variation
78 schema:name Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast)
79 schema:pagination 541-549
80 schema:productId N7c1a1741209a4de98d02a24f189888ff
81 Na5542b9f30b44de6933c8ada55f925f5
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002342924
83 https://doi.org/10.1134/s1064229310050078
84 schema:sdDatePublished 2021-11-01T18:14
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nf151b45403624892b5c38e8c95379c89
87 schema:url https://doi.org/10.1134/s1064229310050078
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N49dcbaf1647e48af95c509715e6daccb rdf:first sg:person.0623173176.49
92 rdf:rest Na39c331467b6451db866bfd2bbff3259
93 N7c1a1741209a4de98d02a24f189888ff schema:name doi
94 schema:value 10.1134/s1064229310050078
95 rdf:type schema:PropertyValue
96 N830b323791934e08a234cccf78d8051e rdf:first sg:person.011267375467.10
97 rdf:rest N49dcbaf1647e48af95c509715e6daccb
98 N871039707e53475ba01fccfaba0c63d3 schema:issueNumber 5
99 rdf:type schema:PublicationIssue
100 N97e95fd9c9844060897772a3f5364c43 rdf:first sg:person.01326304465.08
101 rdf:rest rdf:nil
102 Na388c639ec9b4b5d840651445f30017f rdf:first sg:person.01056214622.51
103 rdf:rest N97e95fd9c9844060897772a3f5364c43
104 Na39c331467b6451db866bfd2bbff3259 rdf:first sg:person.014656331171.71
105 rdf:rest Nd361227aa4954eb28d7725c11d671226
106 Na5542b9f30b44de6933c8ada55f925f5 schema:name dimensions_id
107 schema:value pub.1002342924
108 rdf:type schema:PropertyValue
109 Nc840450a006b4035b1b29bda4c9896da rdf:first sg:person.0722415347.28
110 rdf:rest Na388c639ec9b4b5d840651445f30017f
111 Nd361227aa4954eb28d7725c11d671226 rdf:first sg:person.014277255341.11
112 rdf:rest Nc840450a006b4035b1b29bda4c9896da
113 Nebb5b52d4fd940e1bce96b93d7b0b6fe schema:volumeNumber 43
114 rdf:type schema:PublicationVolume
115 Nf151b45403624892b5c38e8c95379c89 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
118 schema:name Environmental Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
121 schema:name Soil Sciences
122 rdf:type schema:DefinedTerm
123 sg:journal.1136086 schema:issn 0032-180X
124 1064-2293
125 schema:name Eurasian Soil Science
126 schema:publisher Pleiades Publishing
127 rdf:type schema:Periodical
128 sg:person.01056214622.51 schema:affiliation grid-institutes:grid.470117.4
129 schema:familyName Udal’tsov
130 schema:givenName S. N.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056214622.51
132 rdf:type schema:Person
133 sg:person.011267375467.10 schema:affiliation grid-institutes:grid.14476.30
134 schema:familyName Semenov
135 schema:givenName M. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267375467.10
137 rdf:type schema:Person
138 sg:person.01326304465.08 schema:affiliation grid-institutes:grid.14476.30
139 schema:familyName Stepanov
140 schema:givenName A. L.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326304465.08
142 rdf:type schema:Person
143 sg:person.014277255341.11 schema:affiliation grid-institutes:grid.470117.4
144 schema:familyName Kuznetsova
145 schema:givenName T. V.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014277255341.11
147 rdf:type schema:Person
148 sg:person.014656331171.71 schema:affiliation grid-institutes:grid.470117.4
149 schema:familyName Semenov
150 schema:givenName V. M.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014656331171.71
152 rdf:type schema:Person
153 sg:person.0623173176.49 schema:affiliation grid-institutes:grid.4886.2
154 schema:familyName Kravchenko
155 schema:givenName I. K.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623173176.49
157 rdf:type schema:Person
158 sg:person.0722415347.28 schema:affiliation grid-institutes:grid.4886.2
159 schema:familyName Dulov
160 schema:givenName L. E.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722415347.28
162 rdf:type schema:Person
163 sg:pub.10.1007/s00248-004-0164-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005466841
164 https://doi.org/10.1007/s00248-004-0164-x
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00442-005-0261-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002000088
167 https://doi.org/10.1007/s00442-005-0261-7
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s11104-004-0483-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050354526
170 https://doi.org/10.1007/s11104-004-0483-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1023/a:1006244819642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172448
173 https://doi.org/10.1023/a:1006244819642
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.14476.30 schema:alternateName Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia
176 schema:name Faculty of Soil Science, Moscow State University, 119991, Moscow, Russia
177 rdf:type schema:Organization
178 grid-institutes:grid.470117.4 schema:alternateName Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia
179 schema:name Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, ul. Institutskaya 2, 142290, Pushchino, Moscow oblast, Russia
180 rdf:type schema:Organization
181 grid-institutes:grid.4886.2 schema:alternateName Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia
182 schema:name Institute of Microbiology, Russian Academy of Sciences, pr. 60 letiya Oktyabrya 7/2, 117312, Moscow, Russia
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...