Ontology type: schema:ScholarlyArticle
2021-12-21
AUTHORSA. G. Sheinerman, S. A. Krasnitskii
ABSTRACTA model is proposed that describes the porosity, hardness, and fracture toughness of ceramic composites with agglomerates of graphene sheets. It is assumed in the model that graphene sheets are agglomerated during hot pressing of these composites and pores are formed around the agglomerates. The dependences of the porosity, hardness, and fracture toughness of ceramic composites with graphene on the volume fraction of graphene have been calculated within the model. It is shown that pore formation explains the experimentally observed decrease in the hardness and fracture toughness of the composites when the volume fraction of graphene exceeds the critical value. The results obtained within the model are in agreement with experimental data for Al2O3–WC–TiC composites reinforced with graphene sheets. More... »
PAGES873-876
http://scigraph.springernature.com/pub.10.1134/s106378502109011x
DOIhttp://dx.doi.org/10.1134/s106378502109011x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1144055635
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.462405.1",
"name": [
"Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Sheinerman",
"givenName": "A. G.",
"id": "sg:person.012166471433.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166471433.02"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), 197101, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.35915.3b",
"name": [
"Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia",
"St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), 197101, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Krasnitskii",
"givenName": "S. A.",
"id": "sg:person.012327174221.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327174221.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10853-019-03703-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117044936",
"https://doi.org/10.1007/s10853-019-03703-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1557/jmr.2016.390",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053101824",
"https://doi.org/10.1557/jmr.2016.390"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-21",
"datePublishedReg": "2021-12-21",
"description": "A model is proposed that describes the porosity, hardness, and fracture toughness of ceramic composites with agglomerates of graphene sheets. It is assumed in the model that graphene sheets are agglomerated during hot pressing of these composites and pores are formed around the agglomerates. The dependences of the porosity, hardness, and fracture toughness of ceramic composites with graphene on the volume fraction of graphene have been calculated within the model. It is shown that pore formation explains the experimentally observed decrease in the hardness and fracture toughness of the composites when the volume fraction of graphene exceeds the critical value. The results obtained within the model are in agreement with experimental data for Al2O3\u2013WC\u2013TiC composites reinforced with graphene sheets.",
"genre": "article",
"id": "sg:pub.10.1134/s106378502109011x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136630",
"issn": [
"0320-0116",
"0360-120X"
],
"name": "Technical Physics Letters",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "47"
}
],
"keywords": [
"ceramic composites",
"graphene sheets",
"volume fraction",
"fracture toughness",
"hot pressing",
"graphene agglomeration",
"mechanical properties",
"composites",
"toughness",
"hardness",
"graphene",
"porosity",
"experimental data",
"agglomerates",
"sheets",
"critical value",
"pressing",
"pore formation",
"agglomeration",
"pores",
"model",
"properties",
"fraction",
"agreement",
"influence",
"dependence",
"formation",
"results",
"values",
"decrease",
"data"
],
"name": "Modeling of the Influence of Graphene Agglomeration on the Mechanical Properties of Ceramic Composites with Graphene",
"pagination": "873-876",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1144055635"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s106378502109011x"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s106378502109011x",
"https://app.dimensions.ai/details/publication/pub.1144055635"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_917.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s106378502109011x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106378502109011x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106378502109011x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106378502109011x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106378502109011x'
This table displays all metadata directly associated to this object as RDF triples.
104 TRIPLES
22 PREDICATES
57 URIs
48 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s106378502109011x | schema:about | anzsrc-for:02 |
2 | ″ | schema:author | N218d9ee57578448bb9e243a26fcbb14f |
3 | ″ | schema:citation | sg:pub.10.1007/s10853-019-03703-5 |
4 | ″ | ″ | sg:pub.10.1557/jmr.2016.390 |
5 | ″ | schema:datePublished | 2021-12-21 |
6 | ″ | schema:datePublishedReg | 2021-12-21 |
7 | ″ | schema:description | A model is proposed that describes the porosity, hardness, and fracture toughness of ceramic composites with agglomerates of graphene sheets. It is assumed in the model that graphene sheets are agglomerated during hot pressing of these composites and pores are formed around the agglomerates. The dependences of the porosity, hardness, and fracture toughness of ceramic composites with graphene on the volume fraction of graphene have been calculated within the model. It is shown that pore formation explains the experimentally observed decrease in the hardness and fracture toughness of the composites when the volume fraction of graphene exceeds the critical value. The results obtained within the model are in agreement with experimental data for Al2O3–WC–TiC composites reinforced with graphene sheets. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N635defb8586f495fad006f1fa7e8d626 |
12 | ″ | ″ | Nbeefb7dc11de47c1a7141f68a448dddf |
13 | ″ | ″ | sg:journal.1136630 |
14 | ″ | schema:keywords | agglomerates |
15 | ″ | ″ | agglomeration |
16 | ″ | ″ | agreement |
17 | ″ | ″ | ceramic composites |
18 | ″ | ″ | composites |
19 | ″ | ″ | critical value |
20 | ″ | ″ | data |
21 | ″ | ″ | decrease |
22 | ″ | ″ | dependence |
23 | ″ | ″ | experimental data |
24 | ″ | ″ | formation |
25 | ″ | ″ | fraction |
26 | ″ | ″ | fracture toughness |
27 | ″ | ″ | graphene |
28 | ″ | ″ | graphene agglomeration |
29 | ″ | ″ | graphene sheets |
30 | ″ | ″ | hardness |
31 | ″ | ″ | hot pressing |
32 | ″ | ″ | influence |
33 | ″ | ″ | mechanical properties |
34 | ″ | ″ | model |
35 | ″ | ″ | pore formation |
36 | ″ | ″ | pores |
37 | ″ | ″ | porosity |
38 | ″ | ″ | pressing |
39 | ″ | ″ | properties |
40 | ″ | ″ | results |
41 | ″ | ″ | sheets |
42 | ″ | ″ | toughness |
43 | ″ | ″ | values |
44 | ″ | ″ | volume fraction |
45 | ″ | schema:name | Modeling of the Influence of Graphene Agglomeration on the Mechanical Properties of Ceramic Composites with Graphene |
46 | ″ | schema:pagination | 873-876 |
47 | ″ | schema:productId | Nb035e83b9b88473baa5b3471b26f7310 |
48 | ″ | ″ | Ncd84fe559531412f854f2903d679b50b |
49 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1144055635 |
50 | ″ | ″ | https://doi.org/10.1134/s106378502109011x |
51 | ″ | schema:sdDatePublished | 2022-06-01T22:25 |
52 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
53 | ″ | schema:sdPublisher | Ne5d37216ba16467da58c34af5342d718 |
54 | ″ | schema:url | https://doi.org/10.1134/s106378502109011x |
55 | ″ | sgo:license | sg:explorer/license/ |
56 | ″ | sgo:sdDataset | articles |
57 | ″ | rdf:type | schema:ScholarlyArticle |
58 | N218d9ee57578448bb9e243a26fcbb14f | rdf:first | sg:person.012166471433.02 |
59 | ″ | rdf:rest | Nbd68038deebc45eb9b13bbbc1047ed5f |
60 | N635defb8586f495fad006f1fa7e8d626 | schema:issueNumber | 12 |
61 | ″ | rdf:type | schema:PublicationIssue |
62 | Nb035e83b9b88473baa5b3471b26f7310 | schema:name | dimensions_id |
63 | ″ | schema:value | pub.1144055635 |
64 | ″ | rdf:type | schema:PropertyValue |
65 | Nbd68038deebc45eb9b13bbbc1047ed5f | rdf:first | sg:person.012327174221.53 |
66 | ″ | rdf:rest | rdf:nil |
67 | Nbeefb7dc11de47c1a7141f68a448dddf | schema:volumeNumber | 47 |
68 | ″ | rdf:type | schema:PublicationVolume |
69 | Ncd84fe559531412f854f2903d679b50b | schema:name | doi |
70 | ″ | schema:value | 10.1134/s106378502109011x |
71 | ″ | rdf:type | schema:PropertyValue |
72 | Ne5d37216ba16467da58c34af5342d718 | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
75 | ″ | schema:name | Physical Sciences |
76 | ″ | rdf:type | schema:DefinedTerm |
77 | sg:journal.1136630 | schema:issn | 0320-0116 |
78 | ″ | ″ | 0360-120X |
79 | ″ | schema:name | Technical Physics Letters |
80 | ″ | schema:publisher | Pleiades Publishing |
81 | ″ | rdf:type | schema:Periodical |
82 | sg:person.012166471433.02 | schema:affiliation | grid-institutes:grid.462405.1 |
83 | ″ | schema:familyName | Sheinerman |
84 | ″ | schema:givenName | A. G. |
85 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166471433.02 |
86 | ″ | rdf:type | schema:Person |
87 | sg:person.012327174221.53 | schema:affiliation | grid-institutes:grid.35915.3b |
88 | ″ | schema:familyName | Krasnitskii |
89 | ″ | schema:givenName | S. A. |
90 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327174221.53 |
91 | ″ | rdf:type | schema:Person |
92 | sg:pub.10.1007/s10853-019-03703-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1117044936 |
93 | ″ | ″ | https://doi.org/10.1007/s10853-019-03703-5 |
94 | ″ | rdf:type | schema:CreativeWork |
95 | sg:pub.10.1557/jmr.2016.390 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053101824 |
96 | ″ | ″ | https://doi.org/10.1557/jmr.2016.390 |
97 | ″ | rdf:type | schema:CreativeWork |
98 | grid-institutes:grid.35915.3b | schema:alternateName | St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), 197101, St. Petersburg, Russia |
99 | ″ | schema:name | Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia |
100 | ″ | ″ | St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), 197101, St. Petersburg, Russia |
101 | ″ | rdf:type | schema:Organization |
102 | grid-institutes:grid.462405.1 | schema:alternateName | Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178, St. Petersburg, Russia |
103 | ″ | schema:name | Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 199178, St. Petersburg, Russia |
104 | ″ | rdf:type | schema:Organization |