Evaluation of Constants of Electron–Phonon Coupling between Gas Molecules and Graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-02

AUTHORS

S. Yu. Davydov

ABSTRACT

The adsorption of CO, NO, NO2, Н2О, and NH3 molecules on ideal graphene and graphene doped with aluminum is analyzed using simple models. The constants of electron–phonon coupling are evaluated with the Lennard-Jones 6–12 potential for ideal graphene and the 2–4 potential for doped graphene. It is demonstrated that the dimensionless electron–phonon-coupling constant for ideal graphene is ζ ≫ 1, while ζ ~ 1 corresponds to graphene doped with aluminum. Ways to use both types of graphene as a resistive gas sensor are discussed. More... »

PAGES

105-107

Journal

TITLE

Technical Physics Letters

ISSUE

2

VOLUME

44

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063785018020062

DOI

http://dx.doi.org/10.1134/s1063785018020062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101892464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ITMO University", 
          "id": "https://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "ITMO University, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davydov", 
        "givenName": "S. Yu.", 
        "id": "sg:person.015633711655.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063785016070233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001046709", 
          "https://doi.org/10.1134/s1063785016070233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4942491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003234818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2008.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017997181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072364w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072364w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4971372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030700182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/26/44/443001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032850734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043196688", 
          "https://doi.org/10.1038/nmat1967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785012110065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051593678", 
          "https://doi.org/10.1134/s1063785012110065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3272008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057928875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4826642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058085340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.8244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.8244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.125416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060624431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6cp07654h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074246751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783417040059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085042261", 
          "https://doi.org/10.1134/s1063783417040059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784217040065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085091121", 
          "https://doi.org/10.1134/s1063784217040065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02", 
    "datePublishedReg": "2018-02-01", 
    "description": "The adsorption of CO, NO, NO2, \u041d2\u041e, and NH3 molecules on ideal graphene and graphene doped with aluminum is analyzed using simple models. The constants of electron\u2013phonon coupling are evaluated with the Lennard-Jones 6\u201312 potential for ideal graphene and the 2\u20134 potential for doped graphene. It is demonstrated that the dimensionless electron\u2013phonon-coupling constant for ideal graphene is \u03b6 \u226b 1, while \u03b6 ~ 1 corresponds to graphene doped with aluminum. Ways to use both types of graphene as a resistive gas sensor are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063785018020062", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136630", 
        "issn": [
          "1063-7850", 
          "1090-6533"
        ], 
        "name": "Technical Physics Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Evaluation of Constants of Electron\u2013Phonon Coupling between Gas Molecules and Graphene", 
    "pagination": "105-107", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063785018020062"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "565a2b1594ec17ddff0c976529b6d38800833bd000b3a1c8558fa76c30eeb77f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101892464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063785018020062", 
      "https://app.dimensions.ai/details/publication/pub.1101892464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56164_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063785018020062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063785018020062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063785018020062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063785018020062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063785018020062'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063785018020062 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author N1c7ee23dcec246b18a9868aefdabccb6
4 schema:citation sg:pub.10.1038/nmat1967
5 sg:pub.10.1134/s1063783417040059
6 sg:pub.10.1134/s1063784217040065
7 sg:pub.10.1134/s1063785012110065
8 sg:pub.10.1134/s1063785016070233
9 https://doi.org/10.1016/j.cplett.2008.07.039
10 https://doi.org/10.1021/nl072364w
11 https://doi.org/10.1039/c6cp07654h
12 https://doi.org/10.1063/1.3272008
13 https://doi.org/10.1063/1.4826642
14 https://doi.org/10.1063/1.4942491
15 https://doi.org/10.1063/1.4971372
16 https://doi.org/10.1088/0953-8984/26/44/443001
17 https://doi.org/10.1103/physrevb.37.8244
18 https://doi.org/10.1103/physrevb.77.125416
19 schema:datePublished 2018-02
20 schema:datePublishedReg 2018-02-01
21 schema:description The adsorption of CO, NO, NO2, Н2О, and NH3 molecules on ideal graphene and graphene doped with aluminum is analyzed using simple models. The constants of electron–phonon coupling are evaluated with the Lennard-Jones 6–12 potential for ideal graphene and the 2–4 potential for doped graphene. It is demonstrated that the dimensionless electron–phonon-coupling constant for ideal graphene is ζ ≫ 1, while ζ ~ 1 corresponds to graphene doped with aluminum. Ways to use both types of graphene as a resistive gas sensor are discussed.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nc363233c46494f1b995e5e6e622dd624
26 Ncf668cd86aba4c82a27a5e2e2c726ef5
27 sg:journal.1136630
28 schema:name Evaluation of Constants of Electron–Phonon Coupling between Gas Molecules and Graphene
29 schema:pagination 105-107
30 schema:productId N30fc77aef8b1438593b2edc185d2d584
31 Nce4ef504df584575b5d78c46ee51d837
32 Nf638dc45845f44f1862ba6d655a120e2
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101892464
34 https://doi.org/10.1134/s1063785018020062
35 schema:sdDatePublished 2019-04-15T09:14
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N52184d6bf8a140ffa5c5d65ded17244f
38 schema:url https://link.springer.com/10.1134%2FS1063785018020062
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1c7ee23dcec246b18a9868aefdabccb6 rdf:first sg:person.015633711655.34
43 rdf:rest rdf:nil
44 N30fc77aef8b1438593b2edc185d2d584 schema:name doi
45 schema:value 10.1134/s1063785018020062
46 rdf:type schema:PropertyValue
47 N52184d6bf8a140ffa5c5d65ded17244f schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nc363233c46494f1b995e5e6e622dd624 schema:issueNumber 2
50 rdf:type schema:PublicationIssue
51 Nce4ef504df584575b5d78c46ee51d837 schema:name readcube_id
52 schema:value 565a2b1594ec17ddff0c976529b6d38800833bd000b3a1c8558fa76c30eeb77f
53 rdf:type schema:PropertyValue
54 Ncf668cd86aba4c82a27a5e2e2c726ef5 schema:volumeNumber 44
55 rdf:type schema:PublicationVolume
56 Nf638dc45845f44f1862ba6d655a120e2 schema:name dimensions_id
57 schema:value pub.1101892464
58 rdf:type schema:PropertyValue
59 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
60 schema:name Technology
61 rdf:type schema:DefinedTerm
62 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
63 schema:name Nanotechnology
64 rdf:type schema:DefinedTerm
65 sg:journal.1136630 schema:issn 1063-7850
66 1090-6533
67 schema:name Technical Physics Letters
68 rdf:type schema:Periodical
69 sg:person.015633711655.34 schema:affiliation https://www.grid.ac/institutes/grid.35915.3b
70 schema:familyName Davydov
71 schema:givenName S. Yu.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34
73 rdf:type schema:Person
74 sg:pub.10.1038/nmat1967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043196688
75 https://doi.org/10.1038/nmat1967
76 rdf:type schema:CreativeWork
77 sg:pub.10.1134/s1063783417040059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085042261
78 https://doi.org/10.1134/s1063783417040059
79 rdf:type schema:CreativeWork
80 sg:pub.10.1134/s1063784217040065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085091121
81 https://doi.org/10.1134/s1063784217040065
82 rdf:type schema:CreativeWork
83 sg:pub.10.1134/s1063785012110065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593678
84 https://doi.org/10.1134/s1063785012110065
85 rdf:type schema:CreativeWork
86 sg:pub.10.1134/s1063785016070233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001046709
87 https://doi.org/10.1134/s1063785016070233
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.cplett.2008.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017997181
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1021/nl072364w schema:sameAs https://app.dimensions.ai/details/publication/pub.1025673921
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1039/c6cp07654h schema:sameAs https://app.dimensions.ai/details/publication/pub.1074246751
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.3272008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057928875
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.4826642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058085340
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.4942491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003234818
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.4971372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030700182
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1088/0953-8984/26/44/443001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032850734
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.37.8244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546178
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.77.125416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060624431
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.35915.3b schema:alternateName ITMO University
110 schema:name ITMO University, 197101, St. Petersburg, Russia
111 Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...