High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

S. A. Blokhin, N. A. Maleev, M. A. Bobrov, A. G. Kuzmenkov, A. V. Sakharov, V. M. Ustinov

ABSTRACT

The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called “vertical-cavity surface-emitting lasers”) under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ∼30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers. More... »

PAGES

1-16

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063785018010054

DOI

http://dx.doi.org/10.1134/s1063785018010054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101369272


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blokhin", 
        "givenName": "S. A.", 
        "id": "sg:person.015244136173.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Electrotechnical University, 197022, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
            "St. Petersburg State Electrotechnical University, 197022, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maleev", 
        "givenName": "N. A.", 
        "id": "sg:person.011317077151.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bobrov", 
        "givenName": "M. A.", 
        "id": "sg:person.016652543020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.502986.0", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuzmenkov", 
        "givenName": "A. G.", 
        "id": "sg:person.013204674115.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakharov", 
        "givenName": "A. V.", 
        "id": "sg:person.010201114167.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201114167.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustinov", 
        "givenName": "V. M.", 
        "id": "sg:person.010616411412.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1187396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053571974", 
          "https://doi.org/10.1134/1.1187396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782611050216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003208590", 
          "https://doi.org/10.1134/s1063782611050216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614120033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036859236", 
          "https://doi.org/10.1134/s1063782614120033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612100223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001454055", 
          "https://doi.org/10.1134/s1063782612100223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24986-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038785038", 
          "https://doi.org/10.1007/978-3-642-24986-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785012020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023017572", 
          "https://doi.org/10.1134/s1063785012020101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called \u201cvertical-cavity surface-emitting lasers\u201d) under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of \u223c30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063785018010054", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136630", 
        "issn": [
          "0320-0116", 
          "0360-120X"
        ], 
        "name": "Technical Physics Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "vertical-cavity surface-emitting lasers", 
      "optical data transmission system", 
      "active region", 
      "surface-emitting lasers", 
      "vertical cavity surface", 
      "lifetime of photons", 
      "direct current modulation", 
      "multilevel modulation formats", 
      "electrical parasitic elements", 
      "optical microcavities", 
      "semiconductor lasers", 
      "vertical microcavities", 
      "emitting lasers", 
      "modulation bandwidth", 
      "optical channels", 
      "differential gain", 
      "laser", 
      "modulation formats", 
      "microcavities", 
      "parasitic frequencies", 
      "data transmission system", 
      "amplitude modulation", 
      "internal properties", 
      "information capacity", 
      "thermal effects", 
      "equivalent circuit", 
      "parasitic elements", 
      "emission composition", 
      "photons", 
      "classical scheme", 
      "lifetime", 
      "GHz", 
      "modulation", 
      "bandwidth", 
      "main problems", 
      "circuit", 
      "region", 
      "surface", 
      "influence", 
      "properties", 
      "channels", 
      "frequency", 
      "overview of approaches", 
      "scheme", 
      "possibility", 
      "gain", 
      "increase", 
      "system", 
      "capacity", 
      "elements", 
      "composition", 
      "format", 
      "reduction", 
      "problem", 
      "approach", 
      "effect", 
      "overview", 
      "way", 
      "basis", 
      "levels", 
      "management"
    ], 
    "name": "High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101369272"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063785018010054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063785018010054", 
      "https://app.dimensions.ai/details/publication/pub.1101369272"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_767.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063785018010054"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063785018010054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063785018010054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063785018010054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063785018010054'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      22 PREDICATES      92 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063785018010054 schema:about anzsrc-for:02
2 schema:author Nbadfad58a4164d79a5ab28f10d68c63c
3 schema:citation sg:pub.10.1007/978-3-642-24986-0
4 sg:pub.10.1134/1.1187396
5 sg:pub.10.1134/s1063782611050216
6 sg:pub.10.1134/s1063782612100223
7 sg:pub.10.1134/s1063782614120033
8 sg:pub.10.1134/s1063785012020101
9 schema:datePublished 2018-01
10 schema:datePublishedReg 2018-01-01
11 schema:description The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called “vertical-cavity surface-emitting lasers”) under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of ∼30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0a7d703266864a01b9819dd8a937bcc9
16 Na69afe9f00154e3fb73247d5c699cc63
17 sg:journal.1136630
18 schema:keywords GHz
19 active region
20 amplitude modulation
21 approach
22 bandwidth
23 basis
24 capacity
25 channels
26 circuit
27 classical scheme
28 composition
29 data transmission system
30 differential gain
31 direct current modulation
32 effect
33 electrical parasitic elements
34 elements
35 emission composition
36 emitting lasers
37 equivalent circuit
38 format
39 frequency
40 gain
41 increase
42 influence
43 information capacity
44 internal properties
45 laser
46 levels
47 lifetime
48 lifetime of photons
49 main problems
50 management
51 microcavities
52 modulation
53 modulation bandwidth
54 modulation formats
55 multilevel modulation formats
56 optical channels
57 optical data transmission system
58 optical microcavities
59 overview
60 overview of approaches
61 parasitic elements
62 parasitic frequencies
63 photons
64 possibility
65 problem
66 properties
67 reduction
68 region
69 scheme
70 semiconductor lasers
71 surface
72 surface-emitting lasers
73 system
74 thermal effects
75 vertical cavity surface
76 vertical microcavities
77 vertical-cavity surface-emitting lasers
78 way
79 schema:name High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)
80 schema:pagination 1-16
81 schema:productId N67a2df67cbcc4a65bd580faf7e024421
82 N83bf8ace27f6440f976091f8bbdd95ad
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101369272
84 https://doi.org/10.1134/s1063785018010054
85 schema:sdDatePublished 2022-05-20T07:34
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N495c5abf0ae346c29abb7006d70e4506
88 schema:url https://doi.org/10.1134/s1063785018010054
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N01685a8d2b234893aba4e093da58e215 rdf:first sg:person.011317077151.34
93 rdf:rest Nd6ffa1dfff69454d97065a8498e6f045
94 N0a7d703266864a01b9819dd8a937bcc9 schema:volumeNumber 44
95 rdf:type schema:PublicationVolume
96 N168d6a37292a48f09a1896e166b24e9e rdf:first sg:person.010616411412.30
97 rdf:rest rdf:nil
98 N495c5abf0ae346c29abb7006d70e4506 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N67a2df67cbcc4a65bd580faf7e024421 schema:name dimensions_id
101 schema:value pub.1101369272
102 rdf:type schema:PropertyValue
103 N83bf8ace27f6440f976091f8bbdd95ad schema:name doi
104 schema:value 10.1134/s1063785018010054
105 rdf:type schema:PropertyValue
106 N8bfa678c6111402ab1e03283f615c968 rdf:first sg:person.013204674115.84
107 rdf:rest Na641dda8f9bb42169529fb358456038c
108 Na641dda8f9bb42169529fb358456038c rdf:first sg:person.010201114167.20
109 rdf:rest N168d6a37292a48f09a1896e166b24e9e
110 Na69afe9f00154e3fb73247d5c699cc63 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Nbadfad58a4164d79a5ab28f10d68c63c rdf:first sg:person.015244136173.28
113 rdf:rest N01685a8d2b234893aba4e093da58e215
114 Nd6ffa1dfff69454d97065a8498e6f045 rdf:first sg:person.016652543020.09
115 rdf:rest N8bfa678c6111402ab1e03283f615c968
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 sg:journal.1136630 schema:issn 0320-0116
120 0360-120X
121 schema:name Technical Physics Letters
122 schema:publisher Pleiades Publishing
123 rdf:type schema:Periodical
124 sg:person.010201114167.20 schema:affiliation grid-institutes:grid.423485.c
125 schema:familyName Sakharov
126 schema:givenName A. V.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010201114167.20
128 rdf:type schema:Person
129 sg:person.010616411412.30 schema:affiliation grid-institutes:grid.32495.39
130 schema:familyName Ustinov
131 schema:givenName V. M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30
133 rdf:type schema:Person
134 sg:person.011317077151.34 schema:affiliation grid-institutes:grid.15447.33
135 schema:familyName Maleev
136 schema:givenName N. A.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34
138 rdf:type schema:Person
139 sg:person.013204674115.84 schema:affiliation grid-institutes:grid.502986.0
140 schema:familyName Kuzmenkov
141 schema:givenName A. G.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84
143 rdf:type schema:Person
144 sg:person.015244136173.28 schema:affiliation grid-institutes:grid.423485.c
145 schema:familyName Blokhin
146 schema:givenName S. A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28
148 rdf:type schema:Person
149 sg:person.016652543020.09 schema:affiliation grid-institutes:grid.423485.c
150 schema:familyName Bobrov
151 schema:givenName M. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09
153 rdf:type schema:Person
154 sg:pub.10.1007/978-3-642-24986-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038785038
155 https://doi.org/10.1007/978-3-642-24986-0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/1.1187396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053571974
158 https://doi.org/10.1134/1.1187396
159 rdf:type schema:CreativeWork
160 sg:pub.10.1134/s1063782611050216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003208590
161 https://doi.org/10.1134/s1063782611050216
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s1063782612100223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001454055
164 https://doi.org/10.1134/s1063782612100223
165 rdf:type schema:CreativeWork
166 sg:pub.10.1134/s1063782614120033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036859236
167 https://doi.org/10.1134/s1063782614120033
168 rdf:type schema:CreativeWork
169 sg:pub.10.1134/s1063785012020101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023017572
170 https://doi.org/10.1134/s1063785012020101
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.15447.33 schema:alternateName St. Petersburg State Electrotechnical University, 197022, St. Petersburg, Russia
173 schema:name Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia
174 St. Petersburg State Electrotechnical University, 197022, St. Petersburg, Russia
175 rdf:type schema:Organization
176 grid-institutes:grid.32495.39 schema:alternateName Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
177 schema:name Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia
178 Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
179 Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia
180 rdf:type schema:Organization
181 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia
182 schema:name Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia
183 rdf:type schema:Organization
184 grid-institutes:grid.502986.0 schema:alternateName Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia
185 schema:name Ioffe Physical Technical Institute, 194021, St. Petersburg, Russia
186 Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...