Ontology type: schema:ScholarlyArticle
2017-10
AUTHORSD. V. Mokhov, T. N. Berezovskaya, A. G. Kuzmenkov, N. A. Maleev, S. N. Timoshnev, V. M. Ustinov
ABSTRACTAn approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%. More... »
PAGES909-911
http://scigraph.springernature.com/pub.10.1134/s1063785017100091
DOIhttp://dx.doi.org/10.1134/s1063785017100091
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092539159
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mokhov",
"givenName": "D. V.",
"id": "sg:person.013317604251.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013317604251.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Berezovskaya",
"givenName": "T. N.",
"id": "sg:person.07460553147.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460553147.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kuzmenkov",
"givenName": "A. G.",
"id": "sg:person.013204674115.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "St. Petersburg State Electrotechnical University LETI, 197022, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.15447.33",
"name": [
"Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"St. Petersburg State Electrotechnical University LETI, 197022, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Maleev",
"givenName": "N. A.",
"id": "sg:person.011317077151.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Timoshnev",
"givenName": "S. N.",
"id": "sg:person.015166220141.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015166220141.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.32495.39",
"name": [
"Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Ustinov",
"givenName": "V. M.",
"id": "sg:person.012211352412.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34"
],
"type": "Person"
}
],
"datePublished": "2017-10",
"datePublishedReg": "2017-10-01",
"description": "An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%.",
"genre": "article",
"id": "sg:pub.10.1134/s1063785017100091",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136630",
"issn": [
"0320-0116",
"0360-120X"
],
"name": "Technical Physics Letters",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "43"
}
],
"keywords": [
"gallium arsenide epitaxial layers",
"epitaxial layers",
"GaAs layers",
"carrier density",
"precision calibration",
"CV profiling",
"level calibration",
"layer",
"silicon",
"relative error",
"thorough optimization",
"high accuracy",
"calibration",
"Hall effect",
"density",
"profiling techniques",
"temperature",
"technique",
"optimization",
"reliability",
"parameters",
"accuracy",
"error",
"dependence",
"approach",
"procedure",
"use",
"instrument",
"levels",
"profiling"
],
"name": "Precision calibration of the silicon doping level in gallium arsenide epitaxial layers",
"pagination": "909-911",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092539159"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063785017100091"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063785017100091",
"https://app.dimensions.ai/details/publication/pub.1092539159"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_722.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063785017100091"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063785017100091'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063785017100091'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063785017100091'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063785017100091'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
21 PREDICATES
55 URIs
48 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063785017100091 | schema:about | anzsrc-for:02 |
2 | ″ | schema:author | Nd4e4b4cd4c2b4f288d25443b9d858fa1 |
3 | ″ | schema:datePublished | 2017-10 |
4 | ″ | schema:datePublishedReg | 2017-10-01 |
5 | ″ | schema:description | An approach to precision calibration of the silicon doping level in gallium arsenide epitaxial layers is discussed that is based on studying the dependence of the carrier density in the test GaAs layer on the silicon- source temperature using the Hall-effect and CV profiling techniques. The parameters are measured by standard or certified measuring techniques and approved measuring instruments. It is demonstrated that the use of CV profiling for controlling the carrier density in the test GaAs layer at the thorough optimization of the measuring procedure ensures the highest accuracy and reliability of doping level calibration in the epitaxial layers with a relative error of no larger than 2.5%. |
6 | ″ | schema:genre | article |
7 | ″ | schema:inLanguage | en |
8 | ″ | schema:isAccessibleForFree | false |
9 | ″ | schema:isPartOf | Nc5d50c98a22244df92de8f37480b55b3 |
10 | ″ | ″ | Nf0d290d077f646d8ba2fb81b6cb67f17 |
11 | ″ | ″ | sg:journal.1136630 |
12 | ″ | schema:keywords | CV profiling |
13 | ″ | ″ | GaAs layers |
14 | ″ | ″ | Hall effect |
15 | ″ | ″ | accuracy |
16 | ″ | ″ | approach |
17 | ″ | ″ | calibration |
18 | ″ | ″ | carrier density |
19 | ″ | ″ | density |
20 | ″ | ″ | dependence |
21 | ″ | ″ | epitaxial layers |
22 | ″ | ″ | error |
23 | ″ | ″ | gallium arsenide epitaxial layers |
24 | ″ | ″ | high accuracy |
25 | ″ | ″ | instrument |
26 | ″ | ″ | layer |
27 | ″ | ″ | level calibration |
28 | ″ | ″ | levels |
29 | ″ | ″ | optimization |
30 | ″ | ″ | parameters |
31 | ″ | ″ | precision calibration |
32 | ″ | ″ | procedure |
33 | ″ | ″ | profiling |
34 | ″ | ″ | profiling techniques |
35 | ″ | ″ | relative error |
36 | ″ | ″ | reliability |
37 | ″ | ″ | silicon |
38 | ″ | ″ | technique |
39 | ″ | ″ | temperature |
40 | ″ | ″ | thorough optimization |
41 | ″ | ″ | use |
42 | ″ | schema:name | Precision calibration of the silicon doping level in gallium arsenide epitaxial layers |
43 | ″ | schema:pagination | 909-911 |
44 | ″ | schema:productId | N791f5f798db74fc18061a60be465a5c3 |
45 | ″ | ″ | N7bb99e111eab4ad4a43319dbf633cd9e |
46 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1092539159 |
47 | ″ | ″ | https://doi.org/10.1134/s1063785017100091 |
48 | ″ | schema:sdDatePublished | 2022-05-20T07:32 |
49 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
50 | ″ | schema:sdPublisher | N422843eed1574eeba70b30b832c21dc9 |
51 | ″ | schema:url | https://doi.org/10.1134/s1063785017100091 |
52 | ″ | sgo:license | sg:explorer/license/ |
53 | ″ | sgo:sdDataset | articles |
54 | ″ | rdf:type | schema:ScholarlyArticle |
55 | N0d23fac837ae4aef974dbe76dc972d8f | rdf:first | sg:person.011317077151.34 |
56 | ″ | rdf:rest | N788fa3295e664db09b0ac1b465883b6d |
57 | N17765b2216a248109c02ec5fe4af47bd | rdf:first | sg:person.012211352412.34 |
58 | ″ | rdf:rest | rdf:nil |
59 | N422843eed1574eeba70b30b832c21dc9 | schema:name | Springer Nature - SN SciGraph project |
60 | ″ | rdf:type | schema:Organization |
61 | N57a51797bd5945a582c3723b9a42bc5b | rdf:first | sg:person.07460553147.33 |
62 | ″ | rdf:rest | N5b98a670a55241458a7f1a7c7dcd20eb |
63 | N5b98a670a55241458a7f1a7c7dcd20eb | rdf:first | sg:person.013204674115.84 |
64 | ″ | rdf:rest | N0d23fac837ae4aef974dbe76dc972d8f |
65 | N788fa3295e664db09b0ac1b465883b6d | rdf:first | sg:person.015166220141.11 |
66 | ″ | rdf:rest | N17765b2216a248109c02ec5fe4af47bd |
67 | N791f5f798db74fc18061a60be465a5c3 | schema:name | doi |
68 | ″ | schema:value | 10.1134/s1063785017100091 |
69 | ″ | rdf:type | schema:PropertyValue |
70 | N7bb99e111eab4ad4a43319dbf633cd9e | schema:name | dimensions_id |
71 | ″ | schema:value | pub.1092539159 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | Nc5d50c98a22244df92de8f37480b55b3 | schema:issueNumber | 10 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | Nd4e4b4cd4c2b4f288d25443b9d858fa1 | rdf:first | sg:person.013317604251.22 |
76 | ″ | rdf:rest | N57a51797bd5945a582c3723b9a42bc5b |
77 | Nf0d290d077f646d8ba2fb81b6cb67f17 | schema:volumeNumber | 43 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
80 | ″ | schema:name | Physical Sciences |
81 | ″ | rdf:type | schema:DefinedTerm |
82 | sg:journal.1136630 | schema:issn | 0320-0116 |
83 | ″ | ″ | 0360-120X |
84 | ″ | schema:name | Technical Physics Letters |
85 | ″ | schema:publisher | Pleiades Publishing |
86 | ″ | rdf:type | schema:Periodical |
87 | sg:person.011317077151.34 | schema:affiliation | grid-institutes:grid.15447.33 |
88 | ″ | schema:familyName | Maleev |
89 | ″ | schema:givenName | N. A. |
90 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34 |
91 | ″ | rdf:type | schema:Person |
92 | sg:person.012211352412.34 | schema:affiliation | grid-institutes:grid.32495.39 |
93 | ″ | schema:familyName | Ustinov |
94 | ″ | schema:givenName | V. M. |
95 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34 |
96 | ″ | rdf:type | schema:Person |
97 | sg:person.013204674115.84 | schema:affiliation | grid-institutes:grid.4886.2 |
98 | ″ | schema:familyName | Kuzmenkov |
99 | ″ | schema:givenName | A. G. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.013317604251.22 | schema:affiliation | grid-institutes:grid.4886.2 |
103 | ″ | schema:familyName | Mokhov |
104 | ″ | schema:givenName | D. V. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013317604251.22 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.015166220141.11 | schema:affiliation | grid-institutes:grid.4886.2 |
108 | ″ | schema:familyName | Timoshnev |
109 | ″ | schema:givenName | S. N. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015166220141.11 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.07460553147.33 | schema:affiliation | grid-institutes:grid.423485.c |
113 | ″ | schema:familyName | Berezovskaya |
114 | ″ | schema:givenName | T. N. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460553147.33 |
116 | ″ | rdf:type | schema:Person |
117 | grid-institutes:grid.15447.33 | schema:alternateName | St. Petersburg State Electrotechnical University LETI, 197022, St. Petersburg, Russia |
118 | ″ | schema:name | Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
119 | ″ | ″ | St. Petersburg State Electrotechnical University LETI, 197022, St. Petersburg, Russia |
120 | ″ | rdf:type | schema:Organization |
121 | grid-institutes:grid.32495.39 | schema:alternateName | Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia |
122 | ″ | schema:name | Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
123 | ″ | ″ | Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia |
124 | ″ | ″ | Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
125 | ″ | rdf:type | schema:Organization |
126 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
127 | ″ | schema:name | Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
128 | ″ | ″ | St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.4886.2 | schema:alternateName | Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
131 | ″ | ″ | St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
132 | ″ | schema:name | Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
133 | ″ | ″ | Scientific and Technological Center of Microelectronics and Submicron Heterostructures, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
134 | ″ | ″ | St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
135 | ″ | rdf:type | schema:Organization |