Structural Features, Physicochemical, and Optical Characteristics of Lithium Niobate Crystals Grown from Boron-Doped Melts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

N. V. Sidorov, N. A. Teplyakova, R. A. Titov, M. N. Palatnikov

ABSTRACT

Chemical interactions in the Li2O−B2O3−Nb2O5 system, as well as certain features of crystallization of LiNbO3 crystals growing from melts containing nonmetal impurities, are considered. It is shown that boron changes the structure of the melt and has a significant impact on the structure and physical characteristics of LiNbO3 : В crystals, practically not entering the lithium niobate structure. Notable changes and certain features were found in the Raman spectra of grown LiNbO3 : В crystals, which indicates changing the sequence of the main cations and vacancies along a crystal polar axis and distortion of the oxygen octahedrons. Meanwhile, the distortion of the oxygen octahedrons is anisotropic. LiNbO3 : В crystals have a higher structural homogeneity than congruent crystals, and are close in the number of NbLi defects to a crystal with a stoichiometric composition, differing from it by a substantially less photorefraction effect. More... »

PAGES

1762-1770

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784218120198

DOI

http://dx.doi.org/10.1134/s1063784218120198

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111754169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials,\nKola Science Center, Russian Academy of Sciences, 184209, Apatity, Murmansk oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidorov", 
        "givenName": "N. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials,\nKola Science Center, Russian Academy of Sciences, 184209, Apatity, Murmansk oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teplyakova", 
        "givenName": "N. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials,\nKola Science Center, Russian Academy of Sciences, 184209, Apatity, Murmansk oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titov", 
        "givenName": "R. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials,\nKola Science Center, Russian Academy of Sciences, 184209, Apatity, Murmansk oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palatnikov", 
        "givenName": "M. N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0036023611080183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000565217", 
          "https://doi.org/10.1134/s0036023611080183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(66)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003520725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(66)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003520725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2010.04.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004095421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2268155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004967225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/416/1/012001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017120854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(91)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(91)90064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018084133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377450803022x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018435793", 
          "https://doi.org/10.1134/s106377450803022x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2013.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018562910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x16070195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021721213", 
          "https://doi.org/10.1134/s0030400x16070195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x16070195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021721213", 
          "https://doi.org/10.1134/s0030400x16070195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168515100076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022011242", 
          "https://doi.org/10.1134/s0020168515100076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10812-014-9878-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023467177", 
          "https://doi.org/10.1007/s10812-014-9878-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00150199408007699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027381606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1562243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028075893", 
          "https://doi.org/10.1134/1.1562243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10812-016-0358-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805727", 
          "https://doi.org/10.1007/s10812-016-0358-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10812-016-0358-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028805727", 
          "https://doi.org/10.1007/s10812-016-0358-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4934203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032471444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2007.08.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040349827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x14070224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041810323", 
          "https://doi.org/10.1134/s0030400x14070224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(95)00231-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050192286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.439901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058017930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.6787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.6787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168518010089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336164", 
          "https://doi.org/10.1134/s0020168518010089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168518010089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336164", 
          "https://doi.org/10.1134/s0020168518010089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168518010089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336164", 
          "https://doi.org/10.1134/s0020168518010089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Chemical interactions in the Li2O\u2212B2O3\u2212Nb2O5 system, as well as certain features of crystallization of LiNbO3 crystals growing from melts containing nonmetal impurities, are considered. It is shown that boron changes the structure of the melt and has a significant impact on the structure and physical characteristics of LiNbO3 : \u0412 crystals, practically not entering the lithium niobate structure. Notable changes and certain features were found in the Raman spectra of grown LiNbO3 : \u0412 crystals, which indicates changing the sequence of the main cations and vacancies along a crystal polar axis and distortion of the oxygen octahedrons. Meanwhile, the distortion of the oxygen octahedrons is anisotropic. LiNbO3 : \u0412 crystals have a higher structural homogeneity than congruent crystals, and are close in the number of NbLi defects to a crystal with a stoichiometric composition, differing from it by a substantially less photorefraction effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063784218120198", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "Structural Features, Physicochemical, and Optical Characteristics of Lithium Niobate Crystals Grown from Boron-Doped Melts", 
    "pagination": "1762-1770", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a794e1810b55ec1945cee1a54ad3c6e23990ffabde59f016f74bc794153bee7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784218120198"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111754169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784218120198", 
      "https://app.dimensions.ai/details/publication/pub.1111754169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68481_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063784218120198"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120198'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120198'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120198'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120198'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784218120198 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nc5ede5092ecf4ce085dd3c1fb5ef9594
4 schema:citation sg:pub.10.1007/s10812-014-9878-9
5 sg:pub.10.1007/s10812-016-0358-2
6 sg:pub.10.1134/1.1562243
7 sg:pub.10.1134/s0020168515100076
8 sg:pub.10.1134/s0020168518010089
9 sg:pub.10.1134/s0030400x14070224
10 sg:pub.10.1134/s0030400x16070195
11 sg:pub.10.1134/s0036023611080183
12 sg:pub.10.1134/s106377450803022x
13 https://doi.org/10.1016/0022-0248(95)00231-6
14 https://doi.org/10.1016/0022-3697(66)90072-2
15 https://doi.org/10.1016/0022-3697(91)90064-7
16 https://doi.org/10.1016/j.jallcom.2010.04.146
17 https://doi.org/10.1016/j.jcrysgro.2013.09.038
18 https://doi.org/10.1016/j.jnoncrysol.2007.08.016
19 https://doi.org/10.1063/1.439901
20 https://doi.org/10.1063/1.4934203
21 https://doi.org/10.1080/00150199408007699
22 https://doi.org/10.1088/1742-6596/416/1/012001
23 https://doi.org/10.1103/physrevb.32.6787
24 https://doi.org/10.1117/12.2268155
25 schema:datePublished 2018-12
26 schema:datePublishedReg 2018-12-01
27 schema:description Chemical interactions in the Li2O−B2O3−Nb2O5 system, as well as certain features of crystallization of LiNbO3 crystals growing from melts containing nonmetal impurities, are considered. It is shown that boron changes the structure of the melt and has a significant impact on the structure and physical characteristics of LiNbO3 : В crystals, practically not entering the lithium niobate structure. Notable changes and certain features were found in the Raman spectra of grown LiNbO3 : В crystals, which indicates changing the sequence of the main cations and vacancies along a crystal polar axis and distortion of the oxygen octahedrons. Meanwhile, the distortion of the oxygen octahedrons is anisotropic. LiNbO3 : В crystals have a higher structural homogeneity than congruent crystals, and are close in the number of NbLi defects to a crystal with a stoichiometric composition, differing from it by a substantially less photorefraction effect.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N051c429fa9574fa7b1f8aa33caff688e
32 N290d44b5ae5443fbb65980e78d3b2cde
33 sg:journal.1136240
34 schema:name Structural Features, Physicochemical, and Optical Characteristics of Lithium Niobate Crystals Grown from Boron-Doped Melts
35 schema:pagination 1762-1770
36 schema:productId N6f301c7dcf24453eab91f6c708922856
37 Nbd2f3ec396f64d94bf5f2f013a431328
38 Nc77ed3a802c745a280b6fe3bd6350d36
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111754169
40 https://doi.org/10.1134/s1063784218120198
41 schema:sdDatePublished 2019-04-11T08:59
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nbad9186a77764432bb1db5af1295714d
44 schema:url https://link.springer.com/10.1134%2FS1063784218120198
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N051c429fa9574fa7b1f8aa33caff688e schema:issueNumber 12
49 rdf:type schema:PublicationIssue
50 N0d395e76e42544cb89d6a16b4ea84f1b rdf:first N20c2227e0cd84b65b15c9f7991d702bf
51 rdf:rest N211cc39df0bb4b3da37fa768b7f3e8db
52 N0e6900080a3047c2be65c9224edb4cb6 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
53 schema:familyName Teplyakova
54 schema:givenName N. A.
55 rdf:type schema:Person
56 N20c2227e0cd84b65b15c9f7991d702bf schema:affiliation https://www.grid.ac/institutes/grid.4886.2
57 schema:familyName Titov
58 schema:givenName R. A.
59 rdf:type schema:Person
60 N211cc39df0bb4b3da37fa768b7f3e8db rdf:first Ne5b677084e7548d184d139a56916c1e1
61 rdf:rest rdf:nil
62 N290d44b5ae5443fbb65980e78d3b2cde schema:volumeNumber 63
63 rdf:type schema:PublicationVolume
64 N6f301c7dcf24453eab91f6c708922856 schema:name doi
65 schema:value 10.1134/s1063784218120198
66 rdf:type schema:PropertyValue
67 Nbad9186a77764432bb1db5af1295714d schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nbd2f3ec396f64d94bf5f2f013a431328 schema:name dimensions_id
70 schema:value pub.1111754169
71 rdf:type schema:PropertyValue
72 Nc5b2ae4e46dd4f169bf008447ed98fe5 rdf:first N0e6900080a3047c2be65c9224edb4cb6
73 rdf:rest N0d395e76e42544cb89d6a16b4ea84f1b
74 Nc5ede5092ecf4ce085dd3c1fb5ef9594 rdf:first Ne7a65cf317cb4e3ca6d83cfa90f99d14
75 rdf:rest Nc5b2ae4e46dd4f169bf008447ed98fe5
76 Nc77ed3a802c745a280b6fe3bd6350d36 schema:name readcube_id
77 schema:value 8a794e1810b55ec1945cee1a54ad3c6e23990ffabde59f016f74bc794153bee7
78 rdf:type schema:PropertyValue
79 Ne5b677084e7548d184d139a56916c1e1 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Palatnikov
81 schema:givenName M. N.
82 rdf:type schema:Person
83 Ne7a65cf317cb4e3ca6d83cfa90f99d14 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
84 schema:familyName Sidorov
85 schema:givenName N. V.
86 rdf:type schema:Person
87 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
88 schema:name Chemical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Chemistry (incl. Structural)
92 rdf:type schema:DefinedTerm
93 sg:journal.1136240 schema:issn 0038-5662
94 0044-4642
95 schema:name Technical Physics
96 rdf:type schema:Periodical
97 sg:pub.10.1007/s10812-014-9878-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023467177
98 https://doi.org/10.1007/s10812-014-9878-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10812-016-0358-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028805727
101 https://doi.org/10.1007/s10812-016-0358-2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/1.1562243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028075893
104 https://doi.org/10.1134/1.1562243
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0020168515100076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022011242
107 https://doi.org/10.1134/s0020168515100076
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0020168518010089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101336164
110 https://doi.org/10.1134/s0020168518010089
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s0030400x14070224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041810323
113 https://doi.org/10.1134/s0030400x14070224
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/s0030400x16070195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021721213
116 https://doi.org/10.1134/s0030400x16070195
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s0036023611080183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000565217
119 https://doi.org/10.1134/s0036023611080183
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s106377450803022x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018435793
122 https://doi.org/10.1134/s106377450803022x
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0022-0248(95)00231-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050192286
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0022-3697(66)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003520725
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0022-3697(91)90064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018084133
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jallcom.2010.04.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004095421
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jcrysgro.2013.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018562910
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jnoncrysol.2007.08.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040349827
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.439901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017930
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.4934203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032471444
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1080/00150199408007699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027381606
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/1742-6596/416/1/012001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017120854
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevb.32.6787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538830
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1117/12.2268155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004967225
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
149 schema:name Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences, 184209, Apatity, Murmansk oblast, Russia
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...