Numerical Analysis of Electron Runaway in the Presence of Enhanced Field in the Vicinity of a Microtip View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. V. Lisenkov, S. N. Ivanov, Yu. I. Mamontov, I. N. Tikhonov

ABSTRACT

Transition of field-emission electrons to the runaway regime in the region of enhanced electric field determined by the configuration of a microtip on a cathode is studied at several pressures of gas medium. The problem is solved using simulation of electron motion in the presence of nonuniform electric field with the aid of the Monte Carlo procedure in the 2D configuration. Nitrogen is used as a working gas. Passage through a relatively small region of the enhanced field in the vicinity of the microtip may substantially facilitate electron escape to the runaway regime, especially, at pressures of greater than 10 atm. In our opinion, the resulting runaway electrons may provide preionization of gas medium and formation of the initial stage of a 3D discharge. More... »

PAGES

1872-1875

References to SciGraph publications

  • 2018-03. Study of the Formation Time of a Self-Sustained Subnanosecond Discharge at High and Ultrahigh Gas Pressures in PLASMA PHYSICS REPORTS
  • 2008-02. Electron source and acceleration regime of a picosecond electron beam in a gas-filled diode with inhomogeneous field in TECHNICAL PHYSICS LETTERS
  • 2008-09. Electron-optical study of the initial phase of subnanosecond pulsed electric breakdown of gas-filled gaps in TECHNICAL PHYSICS
  • 2010-07. An efficient cathode for generating an supershort avalanche electron beam in air at atmospheric pressure in INSTRUMENTS AND EXPERIMENTAL TECHNIQUES
  • 2010-01. Evolution of subnanosecond pulsed electric breakdown of gas gaps for uniform gas preionization in TECHNICAL PHYSICS
  • 2006-01. Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes in TECHNICAL PHYSICS LETTERS
  • 2016-03. Switching characteristics of nitrogen in the pulsed mode in a subnanosecond time interval in TECHNICAL PHYSICS LETTERS
  • 2006-07. Gas-discharge gap passage by injected high-energy electrons driven by a high-voltage pulse in TECHNICAL PHYSICS LETTERS
  • 2018-04. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres in PLASMA PHYSICS REPORTS
  • 2011-05. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air in PLASMA PHYSICS REPORTS
  • 2004-12. Dynamics of formation of the pulsed electrical breakdown of highly overvoltaged gas gaps in the subnanosecond range in DOKLADY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063784218120095

    DOI

    http://dx.doi.org/10.1134/s1063784218120095

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111756726


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ural Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412761.7", 
              "name": [
                "Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620216, Yekaterinburg, Russia", 
                "Ural Federal University, 620002, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lisenkov", 
            "givenName": "V. V.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Electrophysics", 
              "id": "https://www.grid.ac/institutes/grid.465345.5", 
              "name": [
                "Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620216, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ivanov", 
            "givenName": "S. N.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ural Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412761.7", 
              "name": [
                "Ural Federal University, 620002, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mamontov", 
            "givenName": "Yu. I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ural Federal University", 
              "id": "https://www.grid.ac/institutes/grid.412761.7", 
              "name": [
                "Ural Federal University, 620002, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tikhonov", 
            "givenName": "I. N.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063780x11040118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003704265", 
              "https://doi.org/10.1134/s1063780x11040118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106378501603007x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004886271", 
              "https://doi.org/10.1134/s106378501603007x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785008020259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007199074", 
              "https://doi.org/10.1134/s1063785008020259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063784210010093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014425089", 
              "https://doi.org/10.1134/s1063784210010093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3727/43/31/315204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018194663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785006070078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018620752", 
              "https://doi.org/10.1134/s1063785006070078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063784208090065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020451852", 
              "https://doi.org/10.1134/s1063784208090065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1848620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033072283", 
              "https://doi.org/10.1134/1.1848620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-554x(66)90172-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038420583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-554x(66)90172-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038420583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0020441210040135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045512888", 
              "https://doi.org/10.1134/s0020441210040135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0020441210040135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045512888", 
              "https://doi.org/10.1134/s0020441210040135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785006010068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046529551", 
              "https://doi.org/10.1134/s1063785006010068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785006010068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046529551", 
              "https://doi.org/10.1134/s1063785006010068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0022-3727/46/28/285201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049953538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4768912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058064277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/pu1990v033n07abeh002606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058171986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a1566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a1566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060428929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.135.a988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060429093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.16.1013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.16.1013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.16.1041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.16.1041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060466519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.2932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.2932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.36.5310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060476879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.36.5310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060476879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.38.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.38.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/27.893314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061141183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tps.2013.2258041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061768370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063780x18030042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101893561", 
              "https://doi.org/10.1134/s1063780x18030042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063780x18040104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103625641", 
              "https://doi.org/10.1134/s1063780x18040104"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Transition of field-emission electrons to the runaway regime in the region of enhanced electric field determined by the configuration of a microtip on a cathode is studied at several pressures of gas medium. The problem is solved using simulation of electron motion in the presence of nonuniform electric field with the aid of the Monte Carlo procedure in the 2D configuration. Nitrogen is used as a working gas. Passage through a relatively small region of the enhanced field in the vicinity of the microtip may substantially facilitate electron escape to the runaway regime, especially, at pressures of greater than 10 atm. In our opinion, the resulting runaway electrons may provide preionization of gas medium and formation of the initial stage of a 3D discharge.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063784218120095", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136240", 
            "issn": [
              "0038-5662", 
              "0044-4642"
            ], 
            "name": "Technical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "63"
          }
        ], 
        "name": "Numerical Analysis of Electron Runaway in the Presence of Enhanced Field in the Vicinity of a Microtip", 
        "pagination": "1872-1875", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c03b3296408a2be958c9f3a8dafa31956067e2ffc0df6d60db49e524f27170e8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063784218120095"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111756726"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063784218120095", 
          "https://app.dimensions.ai/details/publication/pub.1111756726"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68472_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1063784218120095"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120095'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120095'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120095'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784218120095'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063784218120095 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author Nd8243633e9144bedb7d215c7f46dbfef
    4 schema:citation sg:pub.10.1134/1.1848620
    5 sg:pub.10.1134/s0020441210040135
    6 sg:pub.10.1134/s1063780x11040118
    7 sg:pub.10.1134/s1063780x18030042
    8 sg:pub.10.1134/s1063780x18040104
    9 sg:pub.10.1134/s1063784208090065
    10 sg:pub.10.1134/s1063784210010093
    11 sg:pub.10.1134/s1063785006010068
    12 sg:pub.10.1134/s1063785006070078
    13 sg:pub.10.1134/s1063785008020259
    14 sg:pub.10.1134/s106378501603007x
    15 https://doi.org/10.1016/0029-554x(66)90172-8
    16 https://doi.org/10.1063/1.4768912
    17 https://doi.org/10.1070/pu1990v033n07abeh002606
    18 https://doi.org/10.1088/0022-3727/43/31/315204
    19 https://doi.org/10.1088/0022-3727/46/28/285201
    20 https://doi.org/10.1103/physrev.135.a1566
    21 https://doi.org/10.1103/physrev.135.a988
    22 https://doi.org/10.1103/physreva.16.1013
    23 https://doi.org/10.1103/physreva.16.1041
    24 https://doi.org/10.1103/physreva.31.2932
    25 https://doi.org/10.1103/physreva.36.5310
    26 https://doi.org/10.1103/revmodphys.38.1
    27 https://doi.org/10.1109/27.893314
    28 https://doi.org/10.1109/tps.2013.2258041
    29 schema:datePublished 2018-12
    30 schema:datePublishedReg 2018-12-01
    31 schema:description Transition of field-emission electrons to the runaway regime in the region of enhanced electric field determined by the configuration of a microtip on a cathode is studied at several pressures of gas medium. The problem is solved using simulation of electron motion in the presence of nonuniform electric field with the aid of the Monte Carlo procedure in the 2D configuration. Nitrogen is used as a working gas. Passage through a relatively small region of the enhanced field in the vicinity of the microtip may substantially facilitate electron escape to the runaway regime, especially, at pressures of greater than 10 atm. In our opinion, the resulting runaway electrons may provide preionization of gas medium and formation of the initial stage of a 3D discharge.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N39213f705ed347ceadc66a9ce4e2a07d
    36 N3b954cf30b8b4db8861c7a1a31c8b843
    37 sg:journal.1136240
    38 schema:name Numerical Analysis of Electron Runaway in the Presence of Enhanced Field in the Vicinity of a Microtip
    39 schema:pagination 1872-1875
    40 schema:productId N8fddf1f2960b4b4f9db0786cba5d9c50
    41 Nd1f43f2e3c38435e82f285632d2612e9
    42 Ne48c69f2378d449e970d3dbc01a4dca7
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111756726
    44 https://doi.org/10.1134/s1063784218120095
    45 schema:sdDatePublished 2019-04-11T08:58
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nfc104c2b9c084d19902a5fdc969d3309
    48 schema:url https://link.springer.com/10.1134%2FS1063784218120095
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N18be6c76ecb94ad8a7f506cd0fa7b0d6 rdf:first Nd15f2d713de94fd0a7f72db01bf833d0
    53 rdf:rest rdf:nil
    54 N27df6a1e8eff4b9b899fa0ed6e749ab6 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
    55 schema:familyName Mamontov
    56 schema:givenName Yu. I.
    57 rdf:type schema:Person
    58 N293a265104dd4c7c9c81210932feb919 rdf:first N52aa8a8d74124c97964f55d9927ac2c6
    59 rdf:rest N9e21dab1096f4024af89264a8f375b9d
    60 N39213f705ed347ceadc66a9ce4e2a07d schema:volumeNumber 63
    61 rdf:type schema:PublicationVolume
    62 N3b954cf30b8b4db8861c7a1a31c8b843 schema:issueNumber 12
    63 rdf:type schema:PublicationIssue
    64 N49986ca6896c4e25b3604188c26ec9a9 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
    65 schema:familyName Lisenkov
    66 schema:givenName V. V.
    67 rdf:type schema:Person
    68 N52aa8a8d74124c97964f55d9927ac2c6 schema:affiliation https://www.grid.ac/institutes/grid.465345.5
    69 schema:familyName Ivanov
    70 schema:givenName S. N.
    71 rdf:type schema:Person
    72 N8fddf1f2960b4b4f9db0786cba5d9c50 schema:name doi
    73 schema:value 10.1134/s1063784218120095
    74 rdf:type schema:PropertyValue
    75 N9e21dab1096f4024af89264a8f375b9d rdf:first N27df6a1e8eff4b9b899fa0ed6e749ab6
    76 rdf:rest N18be6c76ecb94ad8a7f506cd0fa7b0d6
    77 Nd15f2d713de94fd0a7f72db01bf833d0 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
    78 schema:familyName Tikhonov
    79 schema:givenName I. N.
    80 rdf:type schema:Person
    81 Nd1f43f2e3c38435e82f285632d2612e9 schema:name readcube_id
    82 schema:value c03b3296408a2be958c9f3a8dafa31956067e2ffc0df6d60db49e524f27170e8
    83 rdf:type schema:PropertyValue
    84 Nd8243633e9144bedb7d215c7f46dbfef rdf:first N49986ca6896c4e25b3604188c26ec9a9
    85 rdf:rest N293a265104dd4c7c9c81210932feb919
    86 Ne48c69f2378d449e970d3dbc01a4dca7 schema:name dimensions_id
    87 schema:value pub.1111756726
    88 rdf:type schema:PropertyValue
    89 Nfc104c2b9c084d19902a5fdc969d3309 schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Chemical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Physical Chemistry (incl. Structural)
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136240 schema:issn 0038-5662
    98 0044-4642
    99 schema:name Technical Physics
    100 rdf:type schema:Periodical
    101 sg:pub.10.1134/1.1848620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033072283
    102 https://doi.org/10.1134/1.1848620
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1134/s0020441210040135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045512888
    105 https://doi.org/10.1134/s0020441210040135
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1134/s1063780x11040118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003704265
    108 https://doi.org/10.1134/s1063780x11040118
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1134/s1063780x18030042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101893561
    111 https://doi.org/10.1134/s1063780x18030042
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1134/s1063780x18040104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103625641
    114 https://doi.org/10.1134/s1063780x18040104
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1134/s1063784208090065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020451852
    117 https://doi.org/10.1134/s1063784208090065
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1134/s1063784210010093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014425089
    120 https://doi.org/10.1134/s1063784210010093
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1134/s1063785006010068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046529551
    123 https://doi.org/10.1134/s1063785006010068
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1134/s1063785006070078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018620752
    126 https://doi.org/10.1134/s1063785006070078
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1134/s1063785008020259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007199074
    129 https://doi.org/10.1134/s1063785008020259
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1134/s106378501603007x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004886271
    132 https://doi.org/10.1134/s106378501603007x
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0029-554x(66)90172-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038420583
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1063/1.4768912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064277
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1070/pu1990v033n07abeh002606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058171986
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1088/0022-3727/43/31/315204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018194663
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1088/0022-3727/46/28/285201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049953538
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrev.135.a1566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060428929
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrev.135.a988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429093
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physreva.16.1013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466518
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physreva.16.1041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466519
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physreva.31.2932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473312
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physreva.36.5310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476879
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/revmodphys.38.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838465
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/27.893314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061141183
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/tps.2013.2258041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061768370
    161 rdf:type schema:CreativeWork
    162 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
    163 schema:name Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620216, Yekaterinburg, Russia
    164 Ural Federal University, 620002, Yekaterinburg, Russia
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.465345.5 schema:alternateName Institute of Electrophysics
    167 schema:name Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620216, Yekaterinburg, Russia
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...