Relativistic twistron based on backward-wave oscillator with modulating reflector and an efficiency of 56% View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-24

AUTHORS

E. M. Totmeninov, I. V. Pegel, V. P. Tarakanov

ABSTRACT

Using numerical simulation, the operating mode of a relativistic Cherenkov microwave generator of the twistronic type has been demonstrated. The generator includes an electrodynamic system based on a backward-wave oscillator and modulating reflector with nonmonotonous, highly nonuniform energy exchange along the length of the system. The efficiency of power conversion from the electron beam to electromagnetic radiation is 56%, and the electronic efficiency is 66%. For an accelerating voltage of 340 kV and an electron beam current of 3.3 kA, the simulated generation power is 630 MW at a frequency of 9.7 GHz and a guiding magnetic field of 2.2 T. More... »

PAGES

961-964

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784217060251

DOI

http://dx.doi.org/10.1134/s1063784217060251

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086124377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465280.d", 
          "name": [
            "Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Totmeninov", 
        "givenName": "E. M.", 
        "id": "sg:person.013743771633.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013743771633.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Polytechnical University, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia", 
            "National Research Polytechnical University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pegel", 
        "givenName": "I. V.", 
        "id": "sg:person.012101533211.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101533211.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia", 
            "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarakanov", 
        "givenName": "V. P.", 
        "id": "sg:person.016150171432.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150171432.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/1.1479989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009195042", 
          "https://doi.org/10.1134/1.1479989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02066634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032119852", 
          "https://doi.org/10.1007/bf02066634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02436164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033311382", 
          "https://doi.org/10.1007/bf02436164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02677128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009028934", 
          "https://doi.org/10.1007/bf02677128"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-24", 
    "datePublishedReg": "2017-06-24", 
    "description": "Using numerical simulation, the operating mode of a relativistic Cherenkov microwave generator of the twistronic type has been demonstrated. The generator includes an electrodynamic system based on a backward-wave oscillator and modulating reflector with nonmonotonous, highly nonuniform energy exchange along the length of the system. The efficiency of power conversion from the electron beam to electromagnetic radiation is 56%, and the electronic efficiency is 66%. For an accelerating voltage of 340 kV and an electron beam current of 3.3 kA, the simulated generation power is 630 MW at a frequency of 9.7 GHz and a guiding magnetic field of 2.2 T.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063784217060251", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "backward wave oscillator", 
      "electron beam currents", 
      "electrodynamic system", 
      "beam currents", 
      "electron beam", 
      "electromagnetic radiation", 
      "electronic efficiency", 
      "magnetic field", 
      "microwave generator", 
      "energy exchange", 
      "power conversion", 
      "generation power", 
      "numerical simulations", 
      "reflector", 
      "oscillator", 
      "beam", 
      "generator", 
      "efficiency", 
      "radiation", 
      "mW", 
      "voltage", 
      "kV", 
      "GHz", 
      "field", 
      "current", 
      "simulations", 
      "mode", 
      "system", 
      "power", 
      "frequency", 
      "conversion", 
      "ka", 
      "length", 
      "exchange", 
      "types"
    ], 
    "name": "Relativistic twistron based on backward-wave oscillator with modulating reflector and an efficiency of 56%", 
    "pagination": "961-964", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086124377"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784217060251"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784217060251", 
      "https://app.dimensions.ai/details/publication/pub.1086124377"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063784217060251"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784217060251'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784217060251'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784217060251'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784217060251'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      22 PREDICATES      64 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784217060251 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nff96efe9a45a4e4082c7966d426d30c6
4 schema:citation sg:pub.10.1007/bf02066634
5 sg:pub.10.1007/bf02436164
6 sg:pub.10.1007/bf02677128
7 sg:pub.10.1134/1.1479989
8 schema:datePublished 2017-06-24
9 schema:datePublishedReg 2017-06-24
10 schema:description Using numerical simulation, the operating mode of a relativistic Cherenkov microwave generator of the twistronic type has been demonstrated. The generator includes an electrodynamic system based on a backward-wave oscillator and modulating reflector with nonmonotonous, highly nonuniform energy exchange along the length of the system. The efficiency of power conversion from the electron beam to electromagnetic radiation is 56%, and the electronic efficiency is 66%. For an accelerating voltage of 340 kV and an electron beam current of 3.3 kA, the simulated generation power is 630 MW at a frequency of 9.7 GHz and a guiding magnetic field of 2.2 T.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nd37a2cc170394ff9acf14cd71429fca7
15 Ne3c8027eea474a8dac9f9a679ba285e5
16 sg:journal.1136240
17 schema:keywords GHz
18 backward wave oscillator
19 beam
20 beam currents
21 conversion
22 current
23 efficiency
24 electrodynamic system
25 electromagnetic radiation
26 electron beam
27 electron beam currents
28 electronic efficiency
29 energy exchange
30 exchange
31 field
32 frequency
33 generation power
34 generator
35 kV
36 ka
37 length
38 mW
39 magnetic field
40 microwave generator
41 mode
42 numerical simulations
43 oscillator
44 power
45 power conversion
46 radiation
47 reflector
48 simulations
49 system
50 types
51 voltage
52 schema:name Relativistic twistron based on backward-wave oscillator with modulating reflector and an efficiency of 56%
53 schema:pagination 961-964
54 schema:productId N120692de005245a98b6853ef4a19aec9
55 Nfffa2307dddc4210badc5bdb33066c29
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086124377
57 https://doi.org/10.1134/s1063784217060251
58 schema:sdDatePublished 2022-05-10T10:20
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N9222e331092e467fb5fadac84395b7fa
61 schema:url https://doi.org/10.1134/s1063784217060251
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N120692de005245a98b6853ef4a19aec9 schema:name dimensions_id
66 schema:value pub.1086124377
67 rdf:type schema:PropertyValue
68 N67f1ebca3e4a43a6be97cca8614605a2 rdf:first sg:person.012101533211.26
69 rdf:rest N9571f89ba91543188d6f95fa20fad77d
70 N9222e331092e467fb5fadac84395b7fa schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N9571f89ba91543188d6f95fa20fad77d rdf:first sg:person.016150171432.01
73 rdf:rest rdf:nil
74 Nd37a2cc170394ff9acf14cd71429fca7 schema:volumeNumber 62
75 rdf:type schema:PublicationVolume
76 Ne3c8027eea474a8dac9f9a679ba285e5 schema:issueNumber 6
77 rdf:type schema:PublicationIssue
78 Nff96efe9a45a4e4082c7966d426d30c6 rdf:first sg:person.013743771633.43
79 rdf:rest N67f1ebca3e4a43a6be97cca8614605a2
80 Nfffa2307dddc4210badc5bdb33066c29 schema:name doi
81 schema:value 10.1134/s1063784217060251
82 rdf:type schema:PropertyValue
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
87 schema:name Other Physical Sciences
88 rdf:type schema:DefinedTerm
89 sg:journal.1136240 schema:issn 0038-5662
90 0044-4642
91 schema:name Technical Physics
92 schema:publisher Pleiades Publishing
93 rdf:type schema:Periodical
94 sg:person.012101533211.26 schema:affiliation grid-institutes:None
95 schema:familyName Pegel
96 schema:givenName I. V.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101533211.26
98 rdf:type schema:Person
99 sg:person.013743771633.43 schema:affiliation grid-institutes:grid.465280.d
100 schema:familyName Totmeninov
101 schema:givenName E. M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013743771633.43
103 rdf:type schema:Person
104 sg:person.016150171432.01 schema:affiliation grid-institutes:grid.183446.c
105 schema:familyName Tarakanov
106 schema:givenName V. P.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016150171432.01
108 rdf:type schema:Person
109 sg:pub.10.1007/bf02066634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032119852
110 https://doi.org/10.1007/bf02066634
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02436164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033311382
113 https://doi.org/10.1007/bf02436164
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02677128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009028934
116 https://doi.org/10.1007/bf02677128
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/1.1479989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009195042
119 https://doi.org/10.1134/1.1479989
120 rdf:type schema:CreativeWork
121 grid-institutes:None schema:alternateName National Research Polytechnical University, 634050, Tomsk, Russia
122 schema:name Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia
123 National Research Polytechnical University, 634050, Tomsk, Russia
124 rdf:type schema:Organization
125 grid-institutes:grid.183446.c schema:alternateName National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
126 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, 125412, Moscow, Russia
127 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
128 rdf:type schema:Organization
129 grid-institutes:grid.465280.d schema:alternateName Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia
130 schema:name Institute of High Current Electronics, Russian Academy of Sciences, 634055, Tomsk, Russia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...