The Langevin formula for describing the magnetization curve of a magnetic liquid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

S. V. D’yachenko, A. I. Zhernovoi

ABSTRACT

It has been shown that, at the initial stage of the magnetization curve, the magnetic susceptibility of magnetic liquid determined as χ = Mμ0/B (M is the magnetization, B is the magnetic induction in a sample) obeys the Curie law, and the magnetic susceptibility determined as χ = M/H (H is the magnetic field intensity in a sample) obeys the Curie–Weiss law. Since the Curie law is a particular case of the Langevin dependence, it is assumed that an experimental magnetization curve is described by the Langevin formula with a Langevin parameter ξ = PB/kT, where P is the magnetic moment of a particle and T is the temperature. Experimental verification has shown that, at parameter ξ, the mean relative deviation between the values of M measured and calculated by the Langevin formula is 5%. This deviation can be accounted for by the influence of dispersion of the magnetic moments of nanoparticles. More... »

PAGES

1835-1837

References to SciGraph publications

Journal

TITLE

Technical Physics

ISSUE

12

VOLUME

61

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784216120112

DOI

http://dx.doi.org/10.1134/s1063784216120112

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001789606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/18", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Law and Legal Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.437869.7", 
          "name": [
            "St. Petersburg State Institute of Technology (Technical University), 198013, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019yachenko", 
        "givenName": "S. V.", 
        "id": "sg:person.010332103311.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332103311.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Technological Institute", 
          "id": "https://www.grid.ac/institutes/grid.437869.7", 
          "name": [
            "St. Petersburg State Institute of Technology (Technical University), 198013, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhernovoi", 
        "givenName": "A. I.", 
        "id": "sg:person.01034713532.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034713532.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063784215040325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036543412", 
          "https://doi.org/10.1134/s1063784215040325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(96)00067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044958097"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "It has been shown that, at the initial stage of the magnetization curve, the magnetic susceptibility of magnetic liquid determined as \u03c7 = M\u03bc0/B (M is the magnetization, B is the magnetic induction in a sample) obeys the Curie law, and the magnetic susceptibility determined as \u03c7 = M/H (H is the magnetic field intensity in a sample) obeys the Curie\u2013Weiss law. Since the Curie law is a particular case of the Langevin dependence, it is assumed that an experimental magnetization curve is described by the Langevin formula with a Langevin parameter \u03be = PB/kT, where P is the magnetic moment of a particle and T is the temperature. Experimental verification has shown that, at parameter \u03be, the mean relative deviation between the values of M measured and calculated by the Langevin formula is 5%. This deviation can be accounted for by the influence of dispersion of the magnetic moments of nanoparticles.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s1063784216120112", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "The Langevin formula for describing the magnetization curve of a magnetic liquid", 
    "pagination": "1835-1837", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "088606776e7da6fafa2d1d73584d2ed3432111fffeea45122828ca7d6bdb5c7a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784216120112"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001789606"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784216120112", 
      "https://app.dimensions.ai/details/publication/pub.1001789606"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063784216120112"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784216120112'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784216120112'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784216120112'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784216120112'


 

This table displays all metadata directly associated to this object as RDF triples.

75 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784216120112 schema:about anzsrc-for:18
2 anzsrc-for:1801
3 schema:author N44adaa88bd2d432aa64b2698f766e7b6
4 schema:citation sg:pub.10.1134/s1063784215040325
5 https://doi.org/10.1016/s0304-8853(96)00067-4
6 schema:datePublished 2016-12
7 schema:datePublishedReg 2016-12-01
8 schema:description It has been shown that, at the initial stage of the magnetization curve, the magnetic susceptibility of magnetic liquid determined as χ = Mμ0/B (M is the magnetization, B is the magnetic induction in a sample) obeys the Curie law, and the magnetic susceptibility determined as χ = M/H (H is the magnetic field intensity in a sample) obeys the Curie–Weiss law. Since the Curie law is a particular case of the Langevin dependence, it is assumed that an experimental magnetization curve is described by the Langevin formula with a Langevin parameter ξ = PB/kT, where P is the magnetic moment of a particle and T is the temperature. Experimental verification has shown that, at parameter ξ, the mean relative deviation between the values of M measured and calculated by the Langevin formula is 5%. This deviation can be accounted for by the influence of dispersion of the magnetic moments of nanoparticles.
9 schema:genre non_research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N239378439c0f470192d363a63df7f274
13 Nd364c4f819964729a6d73bc4597a48e8
14 sg:journal.1136240
15 schema:name The Langevin formula for describing the magnetization curve of a magnetic liquid
16 schema:pagination 1835-1837
17 schema:productId N2deec2876c2b497fa327a75af9cf9f56
18 N46e3125f8f4849c3b4126a8b62eca5dc
19 N6106239ab7cf418b98b4823044c084b7
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001789606
21 https://doi.org/10.1134/s1063784216120112
22 schema:sdDatePublished 2019-04-11T13:09
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N3e54850b4c984c03a4c30f37b0a7bffd
25 schema:url https://link.springer.com/10.1134%2FS1063784216120112
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N239378439c0f470192d363a63df7f274 schema:issueNumber 12
30 rdf:type schema:PublicationIssue
31 N2deec2876c2b497fa327a75af9cf9f56 schema:name dimensions_id
32 schema:value pub.1001789606
33 rdf:type schema:PropertyValue
34 N3e54850b4c984c03a4c30f37b0a7bffd schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N44adaa88bd2d432aa64b2698f766e7b6 rdf:first sg:person.010332103311.22
37 rdf:rest N504faa42379a4e1daddd4b72c4836b2f
38 N46e3125f8f4849c3b4126a8b62eca5dc schema:name readcube_id
39 schema:value 088606776e7da6fafa2d1d73584d2ed3432111fffeea45122828ca7d6bdb5c7a
40 rdf:type schema:PropertyValue
41 N504faa42379a4e1daddd4b72c4836b2f rdf:first sg:person.01034713532.93
42 rdf:rest rdf:nil
43 N6106239ab7cf418b98b4823044c084b7 schema:name doi
44 schema:value 10.1134/s1063784216120112
45 rdf:type schema:PropertyValue
46 Nd364c4f819964729a6d73bc4597a48e8 schema:volumeNumber 61
47 rdf:type schema:PublicationVolume
48 anzsrc-for:18 schema:inDefinedTermSet anzsrc-for:
49 schema:name Law and Legal Studies
50 rdf:type schema:DefinedTerm
51 anzsrc-for:1801 schema:inDefinedTermSet anzsrc-for:
52 schema:name Law
53 rdf:type schema:DefinedTerm
54 sg:journal.1136240 schema:issn 0038-5662
55 0044-4642
56 schema:name Technical Physics
57 rdf:type schema:Periodical
58 sg:person.010332103311.22 schema:affiliation https://www.grid.ac/institutes/grid.437869.7
59 schema:familyName D’yachenko
60 schema:givenName S. V.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010332103311.22
62 rdf:type schema:Person
63 sg:person.01034713532.93 schema:affiliation https://www.grid.ac/institutes/grid.437869.7
64 schema:familyName Zhernovoi
65 schema:givenName A. I.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034713532.93
67 rdf:type schema:Person
68 sg:pub.10.1134/s1063784215040325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036543412
69 https://doi.org/10.1134/s1063784215040325
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/s0304-8853(96)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044958097
72 rdf:type schema:CreativeWork
73 https://www.grid.ac/institutes/grid.437869.7 schema:alternateName St. Petersburg State Technological Institute
74 schema:name St. Petersburg State Institute of Technology (Technical University), 198013, St. Petersburg, Russia
75 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...