Ontology type: schema:ScholarlyArticle
2015-03
AUTHORSE. M. Tot’meninov, A. I. Klimov
ABSTRACTThe theoretical and numerical analyses of a relativistic backward-wave tube with a coaxial slow-wave structure and modulating reflector are carried out. The incident working TEM mode reflects because of a coaxial TM01 mode excited in the reflector at a near-cutoff frequency. It is shown that the longitudinal component of the electric field present near the reflector provides the energy premodulation of an electron beam and conditions for oscillation frequency tuning. The mechanical tuning of the oscillation frequency of a relativistic coaxial backward-wave oscillator with a modulating reflector within 10% is demonstrated in numerical simulation and experiment. Tuning is accomplished by varying the drift length between the reflector and the entrance to the slow-wave structure of the oscillator. More... »
PAGES413-419
http://scigraph.springernature.com/pub.10.1134/s1063784215030275
DOIhttp://dx.doi.org/10.1134/s1063784215030275
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037113208
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.465280.d",
"name": [
"Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Tot\u2019meninov",
"givenName": "E. M.",
"id": "sg:person.015174643503.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174643503.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.465280.d",
"name": [
"Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Klimov",
"givenName": "A. I.",
"id": "sg:person.013433207765.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433207765.01"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063784211070218",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006840584",
"https://doi.org/10.1134/s1063784211070218"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063785014020278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019477932",
"https://doi.org/10.1134/s1063785014020278"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-03",
"datePublishedReg": "2015-03-01",
"description": "The theoretical and numerical analyses of a relativistic backward-wave tube with a coaxial slow-wave structure and modulating reflector are carried out. The incident working TEM mode reflects because of a coaxial TM01 mode excited in the reflector at a near-cutoff frequency. It is shown that the longitudinal component of the electric field present near the reflector provides the energy premodulation of an electron beam and conditions for oscillation frequency tuning. The mechanical tuning of the oscillation frequency of a relativistic coaxial backward-wave oscillator with a modulating reflector within 10% is demonstrated in numerical simulation and experiment. Tuning is accomplished by varying the drift length between the reflector and the entrance to the slow-wave structure of the oscillator.",
"genre": "article",
"id": "sg:pub.10.1134/s1063784215030275",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136240",
"issn": [
"0038-5662",
"0044-4642"
],
"name": "Technical Physics",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "60"
}
],
"keywords": [
"backward wave oscillator",
"slow-wave structure",
"relativistic backward wave tube",
"backward-wave tube",
"coaxial slow-wave structure",
"electron beam",
"drift length",
"electric field",
"TM01 mode",
"longitudinal component",
"mechanical tuning",
"frequency tuning",
"TEM mode",
"reflector",
"oscillation frequency",
"oscillator",
"tuning",
"numerical simulations",
"premodulation",
"beam",
"mode",
"structure",
"frequency",
"field",
"numerical analysis",
"simulations",
"incidents",
"experiments",
"tube",
"length",
"components",
"entrance",
"conditions",
"analysis"
],
"name": "Frequency-tunable relativistic coaxial backward-wave oscillator with a modulating reflector",
"pagination": "413-419",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037113208"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063784215030275"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063784215030275",
"https://app.dimensions.ai/details/publication/pub.1037113208"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_676.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063784215030275"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784215030275'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784215030275'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784215030275'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784215030275'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
22 PREDICATES
62 URIs
52 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063784215030275 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N989d6fda248444aaa9d803997d43f5c5 |
4 | ″ | schema:citation | sg:pub.10.1134/s1063784211070218 |
5 | ″ | ″ | sg:pub.10.1134/s1063785014020278 |
6 | ″ | schema:datePublished | 2015-03 |
7 | ″ | schema:datePublishedReg | 2015-03-01 |
8 | ″ | schema:description | The theoretical and numerical analyses of a relativistic backward-wave tube with a coaxial slow-wave structure and modulating reflector are carried out. The incident working TEM mode reflects because of a coaxial TM01 mode excited in the reflector at a near-cutoff frequency. It is shown that the longitudinal component of the electric field present near the reflector provides the energy premodulation of an electron beam and conditions for oscillation frequency tuning. The mechanical tuning of the oscillation frequency of a relativistic coaxial backward-wave oscillator with a modulating reflector within 10% is demonstrated in numerical simulation and experiment. Tuning is accomplished by varying the drift length between the reflector and the entrance to the slow-wave structure of the oscillator. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N6d7a56ac8ed146a79111db1444994172 |
13 | ″ | ″ | Ncf470ec7053a4a04b5e683a10de5135f |
14 | ″ | ″ | sg:journal.1136240 |
15 | ″ | schema:keywords | TEM mode |
16 | ″ | ″ | TM01 mode |
17 | ″ | ″ | analysis |
18 | ″ | ″ | backward wave oscillator |
19 | ″ | ″ | backward-wave tube |
20 | ″ | ″ | beam |
21 | ″ | ″ | coaxial slow-wave structure |
22 | ″ | ″ | components |
23 | ″ | ″ | conditions |
24 | ″ | ″ | drift length |
25 | ″ | ″ | electric field |
26 | ″ | ″ | electron beam |
27 | ″ | ″ | entrance |
28 | ″ | ″ | experiments |
29 | ″ | ″ | field |
30 | ″ | ″ | frequency |
31 | ″ | ″ | frequency tuning |
32 | ″ | ″ | incidents |
33 | ″ | ″ | length |
34 | ″ | ″ | longitudinal component |
35 | ″ | ″ | mechanical tuning |
36 | ″ | ″ | mode |
37 | ″ | ″ | numerical analysis |
38 | ″ | ″ | numerical simulations |
39 | ″ | ″ | oscillation frequency |
40 | ″ | ″ | oscillator |
41 | ″ | ″ | premodulation |
42 | ″ | ″ | reflector |
43 | ″ | ″ | relativistic backward wave tube |
44 | ″ | ″ | simulations |
45 | ″ | ″ | slow-wave structure |
46 | ″ | ″ | structure |
47 | ″ | ″ | tube |
48 | ″ | ″ | tuning |
49 | ″ | schema:name | Frequency-tunable relativistic coaxial backward-wave oscillator with a modulating reflector |
50 | ″ | schema:pagination | 413-419 |
51 | ″ | schema:productId | N10f398bea4c24bb2bd6c52fd9be8952d |
52 | ″ | ″ | N823fd3a0558242e0aac4e68c8df92e2e |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037113208 |
54 | ″ | ″ | https://doi.org/10.1134/s1063784215030275 |
55 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | N6aea020de3cf4c28ab73c3651ad44474 |
58 | ″ | schema:url | https://doi.org/10.1134/s1063784215030275 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | articles |
61 | ″ | rdf:type | schema:ScholarlyArticle |
62 | N05fe7e1696704c7c9d671ecdd8fb889b | rdf:first | sg:person.013433207765.01 |
63 | ″ | rdf:rest | rdf:nil |
64 | N10f398bea4c24bb2bd6c52fd9be8952d | schema:name | doi |
65 | ″ | schema:value | 10.1134/s1063784215030275 |
66 | ″ | rdf:type | schema:PropertyValue |
67 | N6aea020de3cf4c28ab73c3651ad44474 | schema:name | Springer Nature - SN SciGraph project |
68 | ″ | rdf:type | schema:Organization |
69 | N6d7a56ac8ed146a79111db1444994172 | schema:volumeNumber | 60 |
70 | ″ | rdf:type | schema:PublicationVolume |
71 | N823fd3a0558242e0aac4e68c8df92e2e | schema:name | dimensions_id |
72 | ″ | schema:value | pub.1037113208 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N989d6fda248444aaa9d803997d43f5c5 | rdf:first | sg:person.015174643503.21 |
75 | ″ | rdf:rest | N05fe7e1696704c7c9d671ecdd8fb889b |
76 | Ncf470ec7053a4a04b5e683a10de5135f | schema:issueNumber | 3 |
77 | ″ | rdf:type | schema:PublicationIssue |
78 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Physical Sciences |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Other Physical Sciences |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | sg:journal.1136240 | schema:issn | 0038-5662 |
85 | ″ | ″ | 0044-4642 |
86 | ″ | schema:name | Technical Physics |
87 | ″ | schema:publisher | Pleiades Publishing |
88 | ″ | rdf:type | schema:Periodical |
89 | sg:person.013433207765.01 | schema:affiliation | grid-institutes:grid.465280.d |
90 | ″ | schema:familyName | Klimov |
91 | ″ | schema:givenName | A. I. |
92 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433207765.01 |
93 | ″ | rdf:type | schema:Person |
94 | sg:person.015174643503.21 | schema:affiliation | grid-institutes:grid.465280.d |
95 | ″ | schema:familyName | Tot’meninov |
96 | ″ | schema:givenName | E. M. |
97 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015174643503.21 |
98 | ″ | rdf:type | schema:Person |
99 | sg:pub.10.1134/s1063784211070218 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006840584 |
100 | ″ | ″ | https://doi.org/10.1134/s1063784211070218 |
101 | ″ | rdf:type | schema:CreativeWork |
102 | sg:pub.10.1134/s1063785014020278 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019477932 |
103 | ″ | ″ | https://doi.org/10.1134/s1063785014020278 |
104 | ″ | rdf:type | schema:CreativeWork |
105 | grid-institutes:grid.465280.d | schema:alternateName | Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia |
106 | ″ | schema:name | Institute of High-Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 4, 634055, Tomsk, Russia |
107 | ″ | rdf:type | schema:Organization |