On the origin of nonequilibrium radiation from iodine molecules at the shock wave front View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

A. V. Emelianov, A. V. Eremin, S. V. Kulikov

ABSTRACT

The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks. More... »

PAGES

647-652

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784213050071

DOI

http://dx.doi.org/10.1134/s1063784213050071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018030620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emelianov", 
        "givenName": "A. V.", 
        "id": "sg:person.016665202253.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "S. V.", 
        "id": "sg:person.011533045235.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533045235.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0022-3727/41/13/135201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784208080094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300201", 
          "https://doi.org/10.1134/s1063784208080094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001930050058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014475547", 
          "https://doi.org/10.1007/s001930050058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1259489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018368449", 
          "https://doi.org/10.1134/1.1259489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014415805710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038364513", 
          "https://doi.org/10.1023/a:1014415805710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1028335810050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049116406", 
          "https://doi.org/10.1134/s1028335810050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1329700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049250292", 
          "https://doi.org/10.1134/1.1329700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063784213050071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "On the origin of nonequilibrium radiation from iodine molecules at the shock wave front", 
    "pagination": "647-652", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55e90b7a2822f9b52dd90923ac7a3fd1137413bec52a89a31a55feeebd4fdb5e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784213050071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018030620"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784213050071", 
      "https://app.dimensions.ai/details/publication/pub.1018030620"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063784213050071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784213050071 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N674a422a1b4a4a098c8a45d80a5cde34
4 schema:citation sg:pub.10.1007/s001930050058
5 sg:pub.10.1023/a:1014415805710
6 sg:pub.10.1134/1.1259489
7 sg:pub.10.1134/1.1329700
8 sg:pub.10.1134/s1028335810050010
9 sg:pub.10.1134/s1063784208080094
10 https://doi.org/10.1088/0022-3727/41/13/135201
11 schema:datePublished 2013-05
12 schema:datePublishedReg 2013-05-01
13 schema:description The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N027be5fe0b9b40b98b40b013adf542f8
18 Nd0820fd4d5b24e3aaaf4a6af7ba616ef
19 sg:journal.1136240
20 schema:name On the origin of nonequilibrium radiation from iodine molecules at the shock wave front
21 schema:pagination 647-652
22 schema:productId N01868fa6524042a186ea6a9667e31bde
23 N377e4b3ef2964332ad91c2914cd1fffc
24 Ndd5276b743254767a61b34c60c87fdf6
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018030620
26 https://doi.org/10.1134/s1063784213050071
27 schema:sdDatePublished 2019-04-10T19:07
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N8639736bc6124f6da76a854562475414
30 schema:url http://link.springer.com/10.1134%2FS1063784213050071
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N01868fa6524042a186ea6a9667e31bde schema:name readcube_id
35 schema:value 55e90b7a2822f9b52dd90923ac7a3fd1137413bec52a89a31a55feeebd4fdb5e
36 rdf:type schema:PropertyValue
37 N027be5fe0b9b40b98b40b013adf542f8 schema:issueNumber 5
38 rdf:type schema:PublicationIssue
39 N0c79156f7a1c445abfbfbefb941d01c1 rdf:first sg:person.014424512265.37
40 rdf:rest Nf5ec67a66c044eafafcaad67df206f65
41 N377e4b3ef2964332ad91c2914cd1fffc schema:name dimensions_id
42 schema:value pub.1018030620
43 rdf:type schema:PropertyValue
44 N674a422a1b4a4a098c8a45d80a5cde34 rdf:first sg:person.016665202253.27
45 rdf:rest N0c79156f7a1c445abfbfbefb941d01c1
46 N8639736bc6124f6da76a854562475414 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nd0820fd4d5b24e3aaaf4a6af7ba616ef schema:volumeNumber 58
49 rdf:type schema:PublicationVolume
50 Ndd5276b743254767a61b34c60c87fdf6 schema:name doi
51 schema:value 10.1134/s1063784213050071
52 rdf:type schema:PropertyValue
53 Nf5ec67a66c044eafafcaad67df206f65 rdf:first sg:person.011533045235.36
54 rdf:rest rdf:nil
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
59 schema:name Other Physical Sciences
60 rdf:type schema:DefinedTerm
61 sg:journal.1136240 schema:issn 0038-5662
62 0044-4642
63 schema:name Technical Physics
64 rdf:type schema:Periodical
65 sg:person.011533045235.36 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
66 schema:familyName Kulikov
67 schema:givenName S. V.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533045235.36
69 rdf:type schema:Person
70 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
71 schema:familyName Eremin
72 schema:givenName A. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
74 rdf:type schema:Person
75 sg:person.016665202253.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Emelianov
77 schema:givenName A. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27
79 rdf:type schema:Person
80 sg:pub.10.1007/s001930050058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014475547
81 https://doi.org/10.1007/s001930050058
82 rdf:type schema:CreativeWork
83 sg:pub.10.1023/a:1014415805710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038364513
84 https://doi.org/10.1023/a:1014415805710
85 rdf:type schema:CreativeWork
86 sg:pub.10.1134/1.1259489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018368449
87 https://doi.org/10.1134/1.1259489
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/1.1329700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049250292
90 https://doi.org/10.1134/1.1329700
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1028335810050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116406
93 https://doi.org/10.1134/s1028335810050010
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1063784208080094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300201
96 https://doi.org/10.1134/s1063784208080094
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0022-3727/41/13/135201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091842
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics
101 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
104 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 125412, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...