On the origin of nonequilibrium radiation from iodine molecules at the shock wave front View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

A. V. Emelianov, A. V. Eremin, S. V. Kulikov

ABSTRACT

The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks. More... »

PAGES

647-652

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784213050071

DOI

http://dx.doi.org/10.1134/s1063784213050071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018030620


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emelianov", 
        "givenName": "A. V.", 
        "id": "sg:person.016665202253.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eremin", 
        "givenName": "A. V.", 
        "id": "sg:person.014424512265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics", 
          "id": "https://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "S. V.", 
        "id": "sg:person.011533045235.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533045235.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0022-3727/41/13/135201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784208080094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006300201", 
          "https://doi.org/10.1134/s1063784208080094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001930050058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014475547", 
          "https://doi.org/10.1007/s001930050058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1259489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018368449", 
          "https://doi.org/10.1134/1.1259489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014415805710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038364513", 
          "https://doi.org/10.1023/a:1014415805710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1028335810050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049116406", 
          "https://doi.org/10.1134/s1028335810050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1329700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049250292", 
          "https://doi.org/10.1134/1.1329700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063784213050071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "On the origin of nonequilibrium radiation from iodine molecules at the shock wave front", 
    "pagination": "647-652", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55e90b7a2822f9b52dd90923ac7a3fd1137413bec52a89a31a55feeebd4fdb5e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784213050071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018030620"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784213050071", 
      "https://app.dimensions.ai/details/publication/pub.1018030620"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063784213050071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784213050071'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784213050071 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N070f9772913f4680954219de96501d94
4 schema:citation sg:pub.10.1007/s001930050058
5 sg:pub.10.1023/a:1014415805710
6 sg:pub.10.1134/1.1259489
7 sg:pub.10.1134/1.1329700
8 sg:pub.10.1134/s1028335810050010
9 sg:pub.10.1134/s1063784208080094
10 https://doi.org/10.1088/0022-3727/41/13/135201
11 schema:datePublished 2013-05
12 schema:datePublishedReg 2013-05-01
13 schema:description The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N9861da89fa1a4293be2f069794d7cc1b
18 Na7f18e98449e46c99643401a8ed0cd6c
19 sg:journal.1136240
20 schema:name On the origin of nonequilibrium radiation from iodine molecules at the shock wave front
21 schema:pagination 647-652
22 schema:productId N646bab4a46dc4f78abd14756bd6045cb
23 N9cd5f658e3a74b949f77486e45546e6a
24 Nb1481525e13247f49b41ae9e05c6699c
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018030620
26 https://doi.org/10.1134/s1063784213050071
27 schema:sdDatePublished 2019-04-10T19:07
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N2ae94c97c2594628b37b4d5f409c0a57
30 schema:url http://link.springer.com/10.1134%2FS1063784213050071
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N070f9772913f4680954219de96501d94 rdf:first sg:person.016665202253.27
35 rdf:rest Nf30b4764ebcd4671a882fc98288bc281
36 N2ae94c97c2594628b37b4d5f409c0a57 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N4c23e011a7844463b21c1f61f68c6544 rdf:first sg:person.011533045235.36
39 rdf:rest rdf:nil
40 N646bab4a46dc4f78abd14756bd6045cb schema:name doi
41 schema:value 10.1134/s1063784213050071
42 rdf:type schema:PropertyValue
43 N9861da89fa1a4293be2f069794d7cc1b schema:issueNumber 5
44 rdf:type schema:PublicationIssue
45 N9cd5f658e3a74b949f77486e45546e6a schema:name dimensions_id
46 schema:value pub.1018030620
47 rdf:type schema:PropertyValue
48 Na7f18e98449e46c99643401a8ed0cd6c schema:volumeNumber 58
49 rdf:type schema:PublicationVolume
50 Nb1481525e13247f49b41ae9e05c6699c schema:name readcube_id
51 schema:value 55e90b7a2822f9b52dd90923ac7a3fd1137413bec52a89a31a55feeebd4fdb5e
52 rdf:type schema:PropertyValue
53 Nf30b4764ebcd4671a882fc98288bc281 rdf:first sg:person.014424512265.37
54 rdf:rest N4c23e011a7844463b21c1f61f68c6544
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
59 schema:name Other Physical Sciences
60 rdf:type schema:DefinedTerm
61 sg:journal.1136240 schema:issn 0038-5662
62 0044-4642
63 schema:name Technical Physics
64 rdf:type schema:Periodical
65 sg:person.011533045235.36 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
66 schema:familyName Kulikov
67 schema:givenName S. V.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011533045235.36
69 rdf:type schema:Person
70 sg:person.014424512265.37 schema:affiliation https://www.grid.ac/institutes/grid.418949.9
71 schema:familyName Eremin
72 schema:givenName A. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014424512265.37
74 rdf:type schema:Person
75 sg:person.016665202253.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Emelianov
77 schema:givenName A. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016665202253.27
79 rdf:type schema:Person
80 sg:pub.10.1007/s001930050058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014475547
81 https://doi.org/10.1007/s001930050058
82 rdf:type schema:CreativeWork
83 sg:pub.10.1023/a:1014415805710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038364513
84 https://doi.org/10.1023/a:1014415805710
85 rdf:type schema:CreativeWork
86 sg:pub.10.1134/1.1259489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018368449
87 https://doi.org/10.1134/1.1259489
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/1.1329700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049250292
90 https://doi.org/10.1134/1.1329700
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1028335810050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049116406
93 https://doi.org/10.1134/s1028335810050010
94 rdf:type schema:CreativeWork
95 sg:pub.10.1134/s1063784208080094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006300201
96 https://doi.org/10.1134/s1063784208080094
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1088/0022-3727/41/13/135201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091842
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics
101 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432, Chernogolovka, Moscow oblast, Russia
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
104 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 125412, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...