Radiation resistance of wide-gap materials as exemplified by SiC nuclear radiation detectors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04-17

AUTHORS

A. M. Ivanov, N. B. Strokan, A. A. Lebedev

ABSTRACT

In wide-gap materials used in nuclear detectors, the polarization effect is typically observed when the concentration of radiation-induced defects is high. An emf arising in the detector is associated with long-term trapping of charge carries by deep radiation-induced levels (centers). The polarization kinetics and the polarization field strength are determined experimentally. The trapping efficiency can be controlled by varying the temperature, and a tradeoff can be reached at an “optimal” temperature between the generation current and the position of the deepest level, which has a negligible effect on charge losses via trapping. It is found that the ratio between the depth of this level and the bandgap is about 1/3 irrespective of the material but the optimal temperature is material-specific. More... »

PAGES

556-560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784212040111

DOI

http://dx.doi.org/10.1134/s1063784212040111

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014988766


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "A. M.", 
        "id": "sg:person.011004300167.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004300167.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strokan", 
        "givenName": "N. B.", 
        "id": "sg:person.015751221645.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751221645.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "A. A.", 
        "id": "sg:person.011264364575.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782608090200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044765555", 
          "https://doi.org/10.1134/s1063782608090200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01338917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039765208", 
          "https://doi.org/10.1007/bf01338917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782611100083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016757846", 
          "https://doi.org/10.1134/s1063782611100083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782607010216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043488179", 
          "https://doi.org/10.1134/s1063782607010216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01163939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018794277", 
          "https://doi.org/10.1007/bf01163939"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04-17", 
    "datePublishedReg": "2012-04-17", 
    "description": "In wide-gap materials used in nuclear detectors, the polarization effect is typically observed when the concentration of radiation-induced defects is high. An emf arising in the detector is associated with long-term trapping of charge carries by deep radiation-induced levels (centers). The polarization kinetics and the polarization field strength are determined experimentally. The trapping efficiency can be controlled by varying the temperature, and a tradeoff can be reached at an \u201coptimal\u201d temperature between the generation current and the position of the deepest level, which has a negligible effect on charge losses via trapping. It is found that the ratio between the depth of this level and the bandgap is about 1/3 irrespective of the material but the optimal temperature is material-specific.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063784212040111", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "wide-gap materials", 
      "SiC nuclear radiation detectors", 
      "radiation-induced defects", 
      "nuclear radiation detectors", 
      "long-term trapping", 
      "polarization field strength", 
      "radiation detectors", 
      "nuclear detectors", 
      "polarization effects", 
      "field strength", 
      "charge loss", 
      "detector", 
      "radiation resistance", 
      "charge carries", 
      "trapping", 
      "deep levels", 
      "bandgap", 
      "temperature", 
      "polarization kinetics", 
      "materials", 
      "negligible effect", 
      "generation", 
      "defects", 
      "depth", 
      "effect", 
      "efficiency", 
      "position", 
      "strength", 
      "ratio", 
      "kinetics", 
      "EMF", 
      "carry", 
      "loss", 
      "levels", 
      "irrespective", 
      "concentration", 
      "resistance", 
      "optimal temperature", 
      "tradeoff", 
      "radiation-induced levels", 
      "deep radiation-induced levels"
    ], 
    "name": "Radiation resistance of wide-gap materials as exemplified by SiC nuclear radiation detectors", 
    "pagination": "556-560", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014988766"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784212040111"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784212040111", 
      "https://app.dimensions.ai/details/publication/pub.1014988766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063784212040111"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784212040111'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784212040111'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784212040111'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784212040111'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      71 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784212040111 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Naf8c698c82ad42479e9ce941d6cdc2f6
4 schema:citation sg:pub.10.1007/bf01163939
5 sg:pub.10.1007/bf01338917
6 sg:pub.10.1134/s1063782607010216
7 sg:pub.10.1134/s1063782608090200
8 sg:pub.10.1134/s1063782611100083
9 schema:datePublished 2012-04-17
10 schema:datePublishedReg 2012-04-17
11 schema:description In wide-gap materials used in nuclear detectors, the polarization effect is typically observed when the concentration of radiation-induced defects is high. An emf arising in the detector is associated with long-term trapping of charge carries by deep radiation-induced levels (centers). The polarization kinetics and the polarization field strength are determined experimentally. The trapping efficiency can be controlled by varying the temperature, and a tradeoff can be reached at an “optimal” temperature between the generation current and the position of the deepest level, which has a negligible effect on charge losses via trapping. It is found that the ratio between the depth of this level and the bandgap is about 1/3 irrespective of the material but the optimal temperature is material-specific.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8c705c3b994741f28239b536ae39e30d
16 Nc17754c9b9604223a72399c44e9ef798
17 sg:journal.1136240
18 schema:keywords EMF
19 SiC nuclear radiation detectors
20 bandgap
21 carry
22 charge carries
23 charge loss
24 concentration
25 deep levels
26 deep radiation-induced levels
27 defects
28 depth
29 detector
30 effect
31 efficiency
32 field strength
33 generation
34 irrespective
35 kinetics
36 levels
37 long-term trapping
38 loss
39 materials
40 negligible effect
41 nuclear detectors
42 nuclear radiation detectors
43 optimal temperature
44 polarization effects
45 polarization field strength
46 polarization kinetics
47 position
48 radiation detectors
49 radiation resistance
50 radiation-induced defects
51 radiation-induced levels
52 ratio
53 resistance
54 strength
55 temperature
56 tradeoff
57 trapping
58 wide-gap materials
59 schema:name Radiation resistance of wide-gap materials as exemplified by SiC nuclear radiation detectors
60 schema:pagination 556-560
61 schema:productId N36713998b572409d884d37c0b9b5a6eb
62 Nb9de899ecccb4b35991159a911b8a3cf
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014988766
64 https://doi.org/10.1134/s1063784212040111
65 schema:sdDatePublished 2021-11-01T18:18
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N1c1e0b78766b483e86e3e4d354b14f1a
68 schema:url https://doi.org/10.1134/s1063784212040111
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N1c1e0b78766b483e86e3e4d354b14f1a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N36713998b572409d884d37c0b9b5a6eb schema:name doi
75 schema:value 10.1134/s1063784212040111
76 rdf:type schema:PropertyValue
77 N456e47e5d23b401593eaf31d6a1341a5 rdf:first sg:person.011264364575.18
78 rdf:rest rdf:nil
79 N8c705c3b994741f28239b536ae39e30d schema:issueNumber 4
80 rdf:type schema:PublicationIssue
81 Naf8c698c82ad42479e9ce941d6cdc2f6 rdf:first sg:person.011004300167.08
82 rdf:rest Nf0b6d10befc24942a2ab9aee5d139fbe
83 Nb9de899ecccb4b35991159a911b8a3cf schema:name dimensions_id
84 schema:value pub.1014988766
85 rdf:type schema:PropertyValue
86 Nc17754c9b9604223a72399c44e9ef798 schema:volumeNumber 57
87 rdf:type schema:PublicationVolume
88 Nf0b6d10befc24942a2ab9aee5d139fbe rdf:first sg:person.015751221645.11
89 rdf:rest N456e47e5d23b401593eaf31d6a1341a5
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
94 schema:name Other Physical Sciences
95 rdf:type schema:DefinedTerm
96 sg:journal.1136240 schema:issn 0038-5662
97 0044-4642
98 schema:name Technical Physics
99 schema:publisher Pleiades Publishing
100 rdf:type schema:Periodical
101 sg:person.011004300167.08 schema:affiliation grid-institutes:grid.423485.c
102 schema:familyName Ivanov
103 schema:givenName A. M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011004300167.08
105 rdf:type schema:Person
106 sg:person.011264364575.18 schema:affiliation grid-institutes:grid.423485.c
107 schema:familyName Lebedev
108 schema:givenName A. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18
110 rdf:type schema:Person
111 sg:person.015751221645.11 schema:affiliation grid-institutes:grid.423485.c
112 schema:familyName Strokan
113 schema:givenName N. B.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015751221645.11
115 rdf:type schema:Person
116 sg:pub.10.1007/bf01163939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018794277
117 https://doi.org/10.1007/bf01163939
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01338917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039765208
120 https://doi.org/10.1007/bf01338917
121 rdf:type schema:CreativeWork
122 sg:pub.10.1134/s1063782607010216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043488179
123 https://doi.org/10.1134/s1063782607010216
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s1063782608090200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044765555
126 https://doi.org/10.1134/s1063782608090200
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/s1063782611100083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016757846
129 https://doi.org/10.1134/s1063782611100083
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
132 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...