Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

A. A. Ovchinnikov, A. E. Hramov, A. Luttjehann, A. A. Koronovskii, G. van Luijtelaar

ABSTRACT

A method is proposed for analysis and automatic diagnostics of characteristic oscillatory patterns of the electric activity of the brain in real time on the basis of a continuous wavelet transformation. The results of experimental investigation of automatic recognition of epileptic activity episodes on experimental animals based on the proposed approach are considered. More... »

PAGES

1-7

References to SciGraph publications

  • 2001-03. Exploring complex networks in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063784211010191

    DOI

    http://dx.doi.org/10.1134/s1063784211010191

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034982670


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia", 
              "id": "http://www.grid.ac/institutes/grid.446088.6", 
              "name": [
                "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ovchinnikov", 
            "givenName": "A. A.", 
            "id": "sg:person.0641534253.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641534253.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia", 
              "id": "http://www.grid.ac/institutes/grid.446088.6", 
              "name": [
                "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hramov", 
            "givenName": "A. E.", 
            "id": "sg:person.0676765425.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland", 
              "id": "http://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luttjehann", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia", 
              "id": "http://www.grid.ac/institutes/grid.446088.6", 
              "name": [
                "Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koronovskii", 
            "givenName": "A. A.", 
            "id": "sg:person.0637642643.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637642643.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland", 
              "id": "http://www.grid.ac/institutes/grid.5590.9", 
              "name": [
                "Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Luijtelaar", 
            "givenName": "G.", 
            "id": "sg:person.01304517314.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304517314.98"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01", 
        "datePublishedReg": "2011-01-01", 
        "description": "A method is proposed for analysis and automatic diagnostics of characteristic oscillatory patterns of the electric activity of the brain in real time on the basis of a continuous wavelet transformation. The results of experimental investigation of automatic recognition of epileptic activity episodes on experimental animals based on the proposed approach are considered.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1063784211010191", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136240", 
            "issn": [
              "0038-5662", 
              "0044-4642"
            ], 
            "name": "Technical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "experimental animals", 
          "electric activity", 
          "characteristic oscillatory patterns", 
          "characteristic pattern", 
          "brain", 
          "oscillatory patterns", 
          "episodes", 
          "animals", 
          "activity episodes", 
          "patterns", 
          "diagnostics", 
          "activity", 
          "neurophysiological signals", 
          "time", 
          "investigation", 
          "method", 
          "analysis", 
          "automatic diagnostics", 
          "results", 
          "recognition", 
          "series", 
          "basis", 
          "real-time experimental implementation", 
          "approach", 
          "signals", 
          "real time", 
          "implementation", 
          "continuous wavelet transformation", 
          "transformation", 
          "experimental investigation", 
          "wavelet transformation", 
          "experimental implementation", 
          "automatic recognition", 
          "time series", 
          "observable time series", 
          "epileptic activity episodes"
        ], 
        "name": "Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034982670"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063784211010191"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063784211010191", 
          "https://app.dimensions.ai/details/publication/pub.1034982670"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_546.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1063784211010191"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784211010191'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784211010191'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784211010191'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784211010191'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      62 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063784211010191 schema:about anzsrc-for:02
    2 schema:author N79cb75ef34184d3286b7e55d37a679e0
    3 schema:citation sg:pub.10.1038/35065725
    4 schema:datePublished 2011-01
    5 schema:datePublishedReg 2011-01-01
    6 schema:description A method is proposed for analysis and automatic diagnostics of characteristic oscillatory patterns of the electric activity of the brain in real time on the basis of a continuous wavelet transformation. The results of experimental investigation of automatic recognition of epileptic activity episodes on experimental animals based on the proposed approach are considered.
    7 schema:genre article
    8 schema:inLanguage en
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N75c03185d4fa44b1adf22f3403a9c113
    11 N79f6de7a5f9b4bc4b1a9419b63d47152
    12 sg:journal.1136240
    13 schema:keywords activity
    14 activity episodes
    15 analysis
    16 animals
    17 approach
    18 automatic diagnostics
    19 automatic recognition
    20 basis
    21 brain
    22 characteristic oscillatory patterns
    23 characteristic pattern
    24 continuous wavelet transformation
    25 diagnostics
    26 electric activity
    27 epileptic activity episodes
    28 episodes
    29 experimental animals
    30 experimental implementation
    31 experimental investigation
    32 implementation
    33 investigation
    34 method
    35 neurophysiological signals
    36 observable time series
    37 oscillatory patterns
    38 patterns
    39 real time
    40 real-time experimental implementation
    41 recognition
    42 results
    43 series
    44 signals
    45 time
    46 time series
    47 transformation
    48 wavelet transformation
    49 schema:name Method for diagnostics of characteristic patterns of observable time series and its real-time experimental implementation for neurophysiological signals
    50 schema:pagination 1-7
    51 schema:productId N28e5e7f7e64f4e198cf4742205dc30f2
    52 N57d38f84469145959143bee4abffa480
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034982670
    54 https://doi.org/10.1134/s1063784211010191
    55 schema:sdDatePublished 2021-11-01T18:17
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N25ed0fed3dbf4e22917dd96467a4fb71
    58 schema:url https://doi.org/10.1134/s1063784211010191
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N0acbbf1cf5ea43d1b149458ae2320493 rdf:first sg:person.0637642643.75
    63 rdf:rest N76e82f2efdd04cafa12509a492adf3b0
    64 N1d92d82d52f84dc69bff0dd0819e6236 rdf:first sg:person.0676765425.00
    65 rdf:rest N8ddb40105e6643afb5cd83d070ffe7bc
    66 N25ed0fed3dbf4e22917dd96467a4fb71 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N28e5e7f7e64f4e198cf4742205dc30f2 schema:name dimensions_id
    69 schema:value pub.1034982670
    70 rdf:type schema:PropertyValue
    71 N57d38f84469145959143bee4abffa480 schema:name doi
    72 schema:value 10.1134/s1063784211010191
    73 rdf:type schema:PropertyValue
    74 N75c03185d4fa44b1adf22f3403a9c113 schema:volumeNumber 56
    75 rdf:type schema:PublicationVolume
    76 N76e82f2efdd04cafa12509a492adf3b0 rdf:first sg:person.01304517314.98
    77 rdf:rest rdf:nil
    78 N79cb75ef34184d3286b7e55d37a679e0 rdf:first sg:person.0641534253.93
    79 rdf:rest N1d92d82d52f84dc69bff0dd0819e6236
    80 N79f6de7a5f9b4bc4b1a9419b63d47152 schema:issueNumber 1
    81 rdf:type schema:PublicationIssue
    82 N8ddb40105e6643afb5cd83d070ffe7bc rdf:first Nfb5e86b43eeb4d0f9371c861fe975d20
    83 rdf:rest N0acbbf1cf5ea43d1b149458ae2320493
    84 Nfb5e86b43eeb4d0f9371c861fe975d20 schema:affiliation grid-institutes:grid.5590.9
    85 schema:familyName Luttjehann
    86 schema:givenName A.
    87 rdf:type schema:Person
    88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Physical Sciences
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1136240 schema:issn 0038-5662
    92 0044-4642
    93 schema:name Technical Physics
    94 schema:publisher Pleiades Publishing
    95 rdf:type schema:Periodical
    96 sg:person.01304517314.98 schema:affiliation grid-institutes:grid.5590.9
    97 schema:familyName van Luijtelaar
    98 schema:givenName G.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304517314.98
    100 rdf:type schema:Person
    101 sg:person.0637642643.75 schema:affiliation grid-institutes:grid.446088.6
    102 schema:familyName Koronovskii
    103 schema:givenName A. A.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637642643.75
    105 rdf:type schema:Person
    106 sg:person.0641534253.93 schema:affiliation grid-institutes:grid.446088.6
    107 schema:familyName Ovchinnikov
    108 schema:givenName A. A.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641534253.93
    110 rdf:type schema:Person
    111 sg:person.0676765425.00 schema:affiliation grid-institutes:grid.446088.6
    112 schema:familyName Hramov
    113 schema:givenName A. E.
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00
    115 rdf:type schema:Person
    116 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
    117 https://doi.org/10.1038/35065725
    118 rdf:type schema:CreativeWork
    119 grid-institutes:grid.446088.6 schema:alternateName Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia
    120 schema:name Chernyshevsky State University, Astrakhanskaya ul. 83, 410012, Saratov, Russia
    121 rdf:type schema:Organization
    122 grid-institutes:grid.5590.9 schema:alternateName Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland
    123 schema:name Donders Center for Cognition, Radboud University Nijmegen, Nijmegen, The Netherland
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...