Formation of the chemical composition of transition metal dichalcogenide thin films at pulsed laser deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-10

AUTHORS

V. Yu. Fominski, R. I. Romanov, A. G. Gnedovets, V. N. Nevolin

ABSTRACT

The formation of the chemical composition of dichalcogenide films at pulsed laser deposition in vacuum and in rarefied gases (Ar, H2) is investigated with MoSex thin-film coatings. It is found that deposition in gases increases the selenium concentration and somewhat flattens the composition over the substrate surface. To elucidate the mechanisms underlying the MoSex film formation, a computer model is used that simulates the motion of a pulsed laser-initiated atomic flux through a rarefied gaseous medium. Using this model, the energy and angular parameters of atomic Mo and Se fluxes toward the substrate are calculated. It is shown that the expansion dynamics of laser plume components (Mo and Se) and the selective sputtering of selenium are the main factors governing the formation of the chemical composition and its distribution over the substrate. The influence of the sort of gas on the efficiency of atomic flux slowdown and scattering and on material losses during deposition is considered. More... »

PAGES

1509-1516

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106378421010018x

DOI

http://dx.doi.org/10.1134/s106378421010018x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003670308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fominski", 
        "givenName": "V. Yu.", 
        "id": "sg:person.015721576231.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721576231.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanov", 
        "givenName": "R. I.", 
        "id": "sg:person.014716620177.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014716620177.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnedovets", 
        "givenName": "A. G.", 
        "id": "sg:person.015550453605.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Lebedev Physics Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevolin", 
        "givenName": "V. N.", 
        "id": "sg:person.012476536477.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0040-6090(94)90018-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002665018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(94)90018-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002665018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2003.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013403149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(98)00398-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018722381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:tril.0000032466.19020.de", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019405563", 
          "https://doi.org/10.1023/b:tril.0000032466.19020.de"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2004.11.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036697700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0043-1648(01)00764-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037052000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(00)00535-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051741556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1330558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-10", 
    "datePublishedReg": "2010-10-01", 
    "description": "The formation of the chemical composition of dichalcogenide films at pulsed laser deposition in vacuum and in rarefied gases (Ar, H2) is investigated with MoSex thin-film coatings. It is found that deposition in gases increases the selenium concentration and somewhat flattens the composition over the substrate surface. To elucidate the mechanisms underlying the MoSex film formation, a computer model is used that simulates the motion of a pulsed laser-initiated atomic flux through a rarefied gaseous medium. Using this model, the energy and angular parameters of atomic Mo and Se fluxes toward the substrate are calculated. It is shown that the expansion dynamics of laser plume components (Mo and Se) and the selective sputtering of selenium are the main factors governing the formation of the chemical composition and its distribution over the substrate. The influence of the sort of gas on the efficiency of atomic flux slowdown and scattering and on material losses during deposition is considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106378421010018x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Formation of the chemical composition of transition metal dichalcogenide thin films at pulsed laser deposition", 
    "pagination": "1509-1516", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "117bd6dbd2f23ab5f03eacb8479a70f06a3d411fe0f99775a4c69b0b87e45ec1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106378421010018x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003670308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106378421010018x", 
      "https://app.dimensions.ai/details/publication/pub.1003670308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43244_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS106378421010018X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106378421010018x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106378421010018x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106378421010018x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106378421010018x'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106378421010018x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N595c9a783c534330aa54cb525b97dfd1
4 schema:citation sg:pub.10.1023/b:tril.0000032466.19020.de
5 https://doi.org/10.1016/0040-6090(94)90018-3
6 https://doi.org/10.1016/j.surfcoat.2003.09.047
7 https://doi.org/10.1016/j.tsf.2004.11.098
8 https://doi.org/10.1016/s0043-1648(01)00764-5
9 https://doi.org/10.1016/s0169-4332(00)00535-3
10 https://doi.org/10.1016/s0169-4332(98)00398-5
11 https://doi.org/10.1063/1.1330558
12 schema:datePublished 2010-10
13 schema:datePublishedReg 2010-10-01
14 schema:description The formation of the chemical composition of dichalcogenide films at pulsed laser deposition in vacuum and in rarefied gases (Ar, H2) is investigated with MoSex thin-film coatings. It is found that deposition in gases increases the selenium concentration and somewhat flattens the composition over the substrate surface. To elucidate the mechanisms underlying the MoSex film formation, a computer model is used that simulates the motion of a pulsed laser-initiated atomic flux through a rarefied gaseous medium. Using this model, the energy and angular parameters of atomic Mo and Se fluxes toward the substrate are calculated. It is shown that the expansion dynamics of laser plume components (Mo and Se) and the selective sputtering of selenium are the main factors governing the formation of the chemical composition and its distribution over the substrate. The influence of the sort of gas on the efficiency of atomic flux slowdown and scattering and on material losses during deposition is considered.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N44d388d8845a455bb096d2d55b63882e
19 N635913e872a4451ab0f6c9e9907e45bf
20 sg:journal.1136240
21 schema:name Formation of the chemical composition of transition metal dichalcogenide thin films at pulsed laser deposition
22 schema:pagination 1509-1516
23 schema:productId N0db8a6b0644644309c859722fb23bd18
24 N78d3de7ba31c47858061f3e0cf2fec44
25 N8b16da81d2a14cfd94b5c092876ae8d8
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003670308
27 https://doi.org/10.1134/s106378421010018x
28 schema:sdDatePublished 2019-04-11T10:53
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nd5d9c6e1488b4b0f8aef4759ccdb3d71
31 schema:url http://link.springer.com/10.1134%2FS106378421010018X
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0db8a6b0644644309c859722fb23bd18 schema:name doi
36 schema:value 10.1134/s106378421010018x
37 rdf:type schema:PropertyValue
38 N3550ac8e1bf14e3487d46a044b876c43 rdf:first sg:person.012476536477.36
39 rdf:rest rdf:nil
40 N44d388d8845a455bb096d2d55b63882e schema:volumeNumber 55
41 rdf:type schema:PublicationVolume
42 N595c9a783c534330aa54cb525b97dfd1 rdf:first sg:person.015721576231.51
43 rdf:rest Ndef8fcb9f8084f69a229ef67855c1591
44 N635913e872a4451ab0f6c9e9907e45bf schema:issueNumber 10
45 rdf:type schema:PublicationIssue
46 N713fa2818245428197c4a9c71881bf7c rdf:first sg:person.015550453605.21
47 rdf:rest N3550ac8e1bf14e3487d46a044b876c43
48 N78d3de7ba31c47858061f3e0cf2fec44 schema:name dimensions_id
49 schema:value pub.1003670308
50 rdf:type schema:PropertyValue
51 N8b16da81d2a14cfd94b5c092876ae8d8 schema:name readcube_id
52 schema:value 117bd6dbd2f23ab5f03eacb8479a70f06a3d411fe0f99775a4c69b0b87e45ec1
53 rdf:type schema:PropertyValue
54 Nd5d9c6e1488b4b0f8aef4759ccdb3d71 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Ndef8fcb9f8084f69a229ef67855c1591 rdf:first sg:person.014716620177.77
57 rdf:rest N713fa2818245428197c4a9c71881bf7c
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
62 schema:name Materials Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1136240 schema:issn 0038-5662
65 0044-4642
66 schema:name Technical Physics
67 rdf:type schema:Periodical
68 sg:person.012476536477.36 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
69 schema:familyName Nevolin
70 schema:givenName V. N.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36
72 rdf:type schema:Person
73 sg:person.014716620177.77 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
74 schema:familyName Romanov
75 schema:givenName R. I.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014716620177.77
77 rdf:type schema:Person
78 sg:person.015550453605.21 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
79 schema:familyName Gnedovets
80 schema:givenName A. G.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21
82 rdf:type schema:Person
83 sg:person.015721576231.51 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
84 schema:familyName Fominski
85 schema:givenName V. Yu.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721576231.51
87 rdf:type schema:Person
88 sg:pub.10.1023/b:tril.0000032466.19020.de schema:sameAs https://app.dimensions.ai/details/publication/pub.1019405563
89 https://doi.org/10.1023/b:tril.0000032466.19020.de
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0040-6090(94)90018-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002665018
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.surfcoat.2003.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013403149
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.tsf.2004.11.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036697700
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0043-1648(01)00764-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037052000
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0169-4332(00)00535-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051741556
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0169-4332(98)00398-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018722381
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1330558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695554
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
106 schema:name National Research Nuclear University MEPhI, Kashirskoe sh. 31, 115409, Moscow, Russia
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
109 schema:name Lebedev Physics Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...