Pulsed laser deposition of thin-film coatings using an antidroplet shield View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, R. I. Romanov

ABSTRACT

The formation of thin-film coatings of molybdenum diselenide is studied during the deposition of a laser-induced material flux using a shield that is placed on the path of the expansion of this flux in order to trap the droplet fraction. To increase the efficiency of atomic scattering into the shadow zone (behind the shield), deposition is carried out in an inert gas (argon). As the argon pressure increases to 2 Pa, low-density coatings with a developed surface relief form in the shadow zone. When a negative bias voltage is applied to a substrate, the quality of the coating increases substantially. Numerical experiments based on the combination of two computer models that describe physical processes on the atomic level using Monte Carlo methods are performed to reveal the factors that affect the thickness, chemical composition, and structure of the MoSex coatings deposited in the shadow zone. The results of calculating the dynamics of the laser-induced atomic flux in a chamber with a shield are used to simulate the coating growth. The deposition of a scattered atomic flux under conditions of surface bombardment by incident particles is shown to substantially increase the coating density and to smooth away the surface relief. More... »

PAGES

1681

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784209110218

DOI

http://dx.doi.org/10.1134/s1063784209110218

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024933258


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevolin", 
        "givenName": "V. N.", 
        "id": "sg:person.012476536477.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fominskii", 
        "givenName": "V. Yu.", 
        "id": "sg:person.014126264277.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014126264277.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnedovets", 
        "givenName": "A. G.", 
        "id": "sg:person.015550453605.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanov", 
        "givenName": "R. I.", 
        "id": "sg:person.014716620177.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014716620177.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2003.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013403149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:tril.0000032466.19020.de", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019405563", 
          "https://doi.org/10.1023/b:tril.0000032466.19020.de"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/32/17/305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030544387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/47/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045452174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/47/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045452174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/41/1/015303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046371726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2007.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048102595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(93)90276-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049106824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0257-8972(93)90276-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049106824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1330558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1621717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057726703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.365672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "The formation of thin-film coatings of molybdenum diselenide is studied during the deposition of a laser-induced material flux using a shield that is placed on the path of the expansion of this flux in order to trap the droplet fraction. To increase the efficiency of atomic scattering into the shadow zone (behind the shield), deposition is carried out in an inert gas (argon). As the argon pressure increases to 2 Pa, low-density coatings with a developed surface relief form in the shadow zone. When a negative bias voltage is applied to a substrate, the quality of the coating increases substantially. Numerical experiments based on the combination of two computer models that describe physical processes on the atomic level using Monte Carlo methods are performed to reveal the factors that affect the thickness, chemical composition, and structure of the MoSex coatings deposited in the shadow zone. The results of calculating the dynamics of the laser-induced atomic flux in a chamber with a shield are used to simulate the coating growth. The deposition of a scattered atomic flux under conditions of surface bombardment by incident particles is shown to substantially increase the coating density and to smooth away the surface relief.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063784209110218", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "Pulsed laser deposition of thin-film coatings using an antidroplet shield", 
    "pagination": "1681", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76c8442df8867a65c87d379ea82bf1bb63325a80bd08d6fe0b316753c21ff74f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784209110218"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024933258"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784209110218", 
      "https://app.dimensions.ai/details/publication/pub.1024933258"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99829_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063784209110218"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784209110218'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784209110218'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784209110218'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784209110218'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784209110218 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N976d2f508930455c91a423391516e7df
4 schema:citation sg:pub.10.1023/b:tril.0000032466.19020.de
5 https://doi.org/10.1016/0257-8972(93)90276-t
6 https://doi.org/10.1016/j.surfcoat.2003.09.047
7 https://doi.org/10.1016/j.surfcoat.2007.03.006
8 https://doi.org/10.1063/1.1330558
9 https://doi.org/10.1063/1.1621717
10 https://doi.org/10.1063/1.358887
11 https://doi.org/10.1063/1.365672
12 https://doi.org/10.1088/0022-3727/32/17/305
13 https://doi.org/10.1088/0022-3727/41/1/015303
14 https://doi.org/10.1088/0741-3335/47/8/012
15 schema:datePublished 2009-11
16 schema:datePublishedReg 2009-11-01
17 schema:description The formation of thin-film coatings of molybdenum diselenide is studied during the deposition of a laser-induced material flux using a shield that is placed on the path of the expansion of this flux in order to trap the droplet fraction. To increase the efficiency of atomic scattering into the shadow zone (behind the shield), deposition is carried out in an inert gas (argon). As the argon pressure increases to 2 Pa, low-density coatings with a developed surface relief form in the shadow zone. When a negative bias voltage is applied to a substrate, the quality of the coating increases substantially. Numerical experiments based on the combination of two computer models that describe physical processes on the atomic level using Monte Carlo methods are performed to reveal the factors that affect the thickness, chemical composition, and structure of the MoSex coatings deposited in the shadow zone. The results of calculating the dynamics of the laser-induced atomic flux in a chamber with a shield are used to simulate the coating growth. The deposition of a scattered atomic flux under conditions of surface bombardment by incident particles is shown to substantially increase the coating density and to smooth away the surface relief.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N5716fe537e184d11bbf1e7fb4d42335c
22 Nf09805dc2df34184bda79e1e04e4cb0c
23 sg:journal.1136240
24 schema:name Pulsed laser deposition of thin-film coatings using an antidroplet shield
25 schema:pagination 1681
26 schema:productId N3a7e3ae88eee44ee928f5c7400114ca2
27 Ned3802b26ffa477faeaea1d8ddc33bf9
28 Nfc42faeca5bc4bc6bb7e061fe63ffb11
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024933258
30 https://doi.org/10.1134/s1063784209110218
31 schema:sdDatePublished 2019-04-11T09:37
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ne48fe59687774b50a9b4ed77e48afc7f
34 schema:url http://link.springer.com/10.1134%2FS1063784209110218
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N3a7e3ae88eee44ee928f5c7400114ca2 schema:name readcube_id
39 schema:value 76c8442df8867a65c87d379ea82bf1bb63325a80bd08d6fe0b316753c21ff74f
40 rdf:type schema:PropertyValue
41 N5716fe537e184d11bbf1e7fb4d42335c schema:volumeNumber 54
42 rdf:type schema:PublicationVolume
43 N6d36347b3dc34ebbb3b13431967794e4 rdf:first sg:person.014126264277.63
44 rdf:rest Ne0a36cd5f8bd457bb5868f8f9f54dc69
45 N976d2f508930455c91a423391516e7df rdf:first sg:person.012476536477.36
46 rdf:rest N6d36347b3dc34ebbb3b13431967794e4
47 Ne0a36cd5f8bd457bb5868f8f9f54dc69 rdf:first sg:person.015550453605.21
48 rdf:rest Ne6f20b3f73664f0fbaad99ab4e552f83
49 Ne48fe59687774b50a9b4ed77e48afc7f schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ne6f20b3f73664f0fbaad99ab4e552f83 rdf:first sg:person.014716620177.77
52 rdf:rest rdf:nil
53 Ned3802b26ffa477faeaea1d8ddc33bf9 schema:name dimensions_id
54 schema:value pub.1024933258
55 rdf:type schema:PropertyValue
56 Nf09805dc2df34184bda79e1e04e4cb0c schema:issueNumber 11
57 rdf:type schema:PublicationIssue
58 Nfc42faeca5bc4bc6bb7e061fe63ffb11 schema:name doi
59 schema:value 10.1134/s1063784209110218
60 rdf:type schema:PropertyValue
61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
62 schema:name Chemical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Chemistry (incl. Structural)
66 rdf:type schema:DefinedTerm
67 sg:journal.1136240 schema:issn 0038-5662
68 0044-4642
69 schema:name Technical Physics
70 rdf:type schema:Periodical
71 sg:person.012476536477.36 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
72 schema:familyName Nevolin
73 schema:givenName V. N.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36
75 rdf:type schema:Person
76 sg:person.014126264277.63 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
77 schema:familyName Fominskii
78 schema:givenName V. Yu.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014126264277.63
80 rdf:type schema:Person
81 sg:person.014716620177.77 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
82 schema:familyName Romanov
83 schema:givenName R. I.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014716620177.77
85 rdf:type schema:Person
86 sg:person.015550453605.21 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
87 schema:familyName Gnedovets
88 schema:givenName A. G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21
90 rdf:type schema:Person
91 sg:pub.10.1023/b:tril.0000032466.19020.de schema:sameAs https://app.dimensions.ai/details/publication/pub.1019405563
92 https://doi.org/10.1023/b:tril.0000032466.19020.de
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0257-8972(93)90276-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1049106824
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.surfcoat.2003.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013403149
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.surfcoat.2007.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048102595
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1063/1.1330558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695554
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1063/1.1621717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057726703
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1063/1.358887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980189
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1063/1.365672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993076
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0022-3727/32/17/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030544387
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0022-3727/41/1/015303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046371726
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0741-3335/47/8/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045452174
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
115 schema:name Moscow Institute of Engineering Physics (State University), Kashirskoe sh. 31, 115409, Moscow, Russia
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...