Optimization of the Q factor of the magnetic Mx resonance under optical pump conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-05

AUTHORS

A. K. Vershovskii, A. S. Pazgalev

ABSTRACT

Optimization of parameters of the Mx resonance, which excited between Zeeman sublevels of a single HFS level of the ground state of an alkali metal in a vacuum cell in a circuit with a single beam for pumping and detection (Mx magnetometer circuit), has been carried out. A simple model taking into account all main factors controlling the resolving power of the Mx resonance (including spin-exchange broadening and absorption in a thick layer of the cell has been constructed. It is shown that the spin-resonance broadening of the resonance line is mainly determined by the requirements imposed on the optical thickness of the cell, which considerably restricts the realization of advantages of ultranarrow (<1 Hz) lines in magnetometry. The experiment confirming the efficiency of the model has been carried out. More... »

PAGES

646

References to SciGraph publications

  • 2007-04. Optical magnetometry in NATURE PHYSICS
  • Journal

    TITLE

    Technical Physics

    ISSUE

    5

    VOLUME

    53

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063784208050198

    DOI

    http://dx.doi.org/10.1134/s1063784208050198

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011556236


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ioffe Institute", 
              "id": "https://www.grid.ac/institutes/grid.423485.c", 
              "name": [
                "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vershovskii", 
            "givenName": "A. K.", 
            "id": "sg:person.07361166175.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361166175.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ioffe Institute", 
              "id": "https://www.grid.ac/institutes/grid.423485.c", 
              "name": [
                "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pazgalev", 
            "givenName": "A. S.", 
            "id": "sg:person.014266653255.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266653255.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nphys566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039498581", 
              "https://doi.org/10.1038/nphys566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039498581", 
              "https://doi.org/10.1038/nphys566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-0233/12/5/307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047877189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/epjap:2006020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056959389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphysrad:01950001106025500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057011685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.105.1924", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060418580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.147.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.147.41", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060433152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.70.460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060452918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.70.460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060452918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.76.833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060455677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.76.833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060455677"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.34.5115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060475399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.34.5115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060475399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.22.758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060772473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.22.758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060772473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.44.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.44.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060838715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.1.000061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065088591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josa.47.000460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065146255"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-05", 
        "datePublishedReg": "2008-05-01", 
        "description": "Optimization of parameters of the Mx resonance, which excited between Zeeman sublevels of a single HFS level of the ground state of an alkali metal in a vacuum cell in a circuit with a single beam for pumping and detection (Mx magnetometer circuit), has been carried out. A simple model taking into account all main factors controlling the resolving power of the Mx resonance (including spin-exchange broadening and absorption in a thick layer of the cell has been constructed. It is shown that the spin-resonance broadening of the resonance line is mainly determined by the requirements imposed on the optical thickness of the cell, which considerably restricts the realization of advantages of ultranarrow (<1 Hz) lines in magnetometry. The experiment confirming the efficiency of the model has been carried out.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063784208050198", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136240", 
            "issn": [
              "0038-5662", 
              "0044-4642"
            ], 
            "name": "Technical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Optimization of the Q factor of the magnetic Mx resonance under optical pump conditions", 
        "pagination": "646", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "370f1dc9bf262955d10f6dbb11cf0493d76c0e4ff9717da32fb9006952c7038c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063784208050198"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011556236"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063784208050198", 
          "https://app.dimensions.ai/details/publication/pub.1011556236"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000504.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1063784208050198"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784208050198'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784208050198'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784208050198'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784208050198'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063784208050198 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nc2f6d754084f42bab488a05be70da5db
    4 schema:citation sg:pub.10.1038/nphys566
    5 https://doi.org/10.1051/epjap:2006020
    6 https://doi.org/10.1051/jphysrad:01950001106025500
    7 https://doi.org/10.1088/0957-0233/12/5/307
    8 https://doi.org/10.1103/physrev.105.1487
    9 https://doi.org/10.1103/physrev.105.1924
    10 https://doi.org/10.1103/physrev.147.41
    11 https://doi.org/10.1103/physrev.70.460
    12 https://doi.org/10.1103/physrev.76.833
    13 https://doi.org/10.1103/physreva.34.5115
    14 https://doi.org/10.1103/physrevlett.22.758
    15 https://doi.org/10.1103/revmodphys.44.169
    16 https://doi.org/10.1364/ao.1.000061
    17 https://doi.org/10.1364/josa.47.000460
    18 schema:datePublished 2008-05
    19 schema:datePublishedReg 2008-05-01
    20 schema:description Optimization of parameters of the Mx resonance, which excited between Zeeman sublevels of a single HFS level of the ground state of an alkali metal in a vacuum cell in a circuit with a single beam for pumping and detection (Mx magnetometer circuit), has been carried out. A simple model taking into account all main factors controlling the resolving power of the Mx resonance (including spin-exchange broadening and absorption in a thick layer of the cell has been constructed. It is shown that the spin-resonance broadening of the resonance line is mainly determined by the requirements imposed on the optical thickness of the cell, which considerably restricts the realization of advantages of ultranarrow (<1 Hz) lines in magnetometry. The experiment confirming the efficiency of the model has been carried out.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf Nb0b051f02b27482bbe928356308b51d1
    25 Ne905c8880a224f5dbab074683321bb4c
    26 sg:journal.1136240
    27 schema:name Optimization of the Q factor of the magnetic Mx resonance under optical pump conditions
    28 schema:pagination 646
    29 schema:productId N913c2de3ec1242e09473438864127d79
    30 Nb8e0fa45236f4722a3911a784c5fc4dc
    31 Ndcd049afa1444fa194da56fae1a11f13
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011556236
    33 https://doi.org/10.1134/s1063784208050198
    34 schema:sdDatePublished 2019-04-10T14:59
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N30962c452a154eba9164d09c5bee0477
    37 schema:url http://link.springer.com/10.1134%2FS1063784208050198
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N279cbcf8749943c3be873b419017a3e9 rdf:first sg:person.014266653255.17
    42 rdf:rest rdf:nil
    43 N30962c452a154eba9164d09c5bee0477 schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 N913c2de3ec1242e09473438864127d79 schema:name dimensions_id
    46 schema:value pub.1011556236
    47 rdf:type schema:PropertyValue
    48 Nb0b051f02b27482bbe928356308b51d1 schema:issueNumber 5
    49 rdf:type schema:PublicationIssue
    50 Nb8e0fa45236f4722a3911a784c5fc4dc schema:name doi
    51 schema:value 10.1134/s1063784208050198
    52 rdf:type schema:PropertyValue
    53 Nc2f6d754084f42bab488a05be70da5db rdf:first sg:person.07361166175.29
    54 rdf:rest N279cbcf8749943c3be873b419017a3e9
    55 Ndcd049afa1444fa194da56fae1a11f13 schema:name readcube_id
    56 schema:value 370f1dc9bf262955d10f6dbb11cf0493d76c0e4ff9717da32fb9006952c7038c
    57 rdf:type schema:PropertyValue
    58 Ne905c8880a224f5dbab074683321bb4c schema:volumeNumber 53
    59 rdf:type schema:PublicationVolume
    60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Physical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Other Physical Sciences
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136240 schema:issn 0038-5662
    67 0044-4642
    68 schema:name Technical Physics
    69 rdf:type schema:Periodical
    70 sg:person.014266653255.17 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
    71 schema:familyName Pazgalev
    72 schema:givenName A. S.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014266653255.17
    74 rdf:type schema:Person
    75 sg:person.07361166175.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
    76 schema:familyName Vershovskii
    77 schema:givenName A. K.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361166175.29
    79 rdf:type schema:Person
    80 sg:pub.10.1038/nphys566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039498581
    81 https://doi.org/10.1038/nphys566
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1051/epjap:2006020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056959389
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1051/jphysrad:01950001106025500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057011685
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1088/0957-0233/12/5/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047877189
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1103/physrev.105.1487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418500
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1103/physrev.105.1924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060418580
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1103/physrev.147.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060433152
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrev.70.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452918
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrev.76.833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455677
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physreva.34.5115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060475399
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.22.758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060772473
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1103/revmodphys.44.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838715
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1364/ao.1.000061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065088591
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1364/josa.47.000460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065146255
    108 rdf:type schema:CreativeWork
    109 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
    110 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...