Peculiarities of pulsed ion implantation from a laser plasma containing multiply charged ions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11

AUTHORS

V. N. Nevolin, V. Yu. Fominski, A. G. Gnedovets, G. A. Kiselev

ABSTRACT

A mathematical model describing the dynamics of a pulsed laser plasma with multiply charged ions, as well as the formation of the accelerated ion flow in an external magnetic field, is developed. Experimental studies and mathematical simulation by the particle-in-cell method are used to determine the role of multiply charged ions in the process of ion implantation into a silicon substrate from the pulsed plasma containing singly and doubly charged titanium ions. The plasma spreads between parallel-plate electrodes (Ti target and Si substrate) along the normal to the surface of the target. Ions are accelerated by high-voltage negative pulses applied to the substrate. It is found that doubly charged ions effectively participate in the implantation process when an external electric field is applied very soon after the laser action on the target. The application of a high-voltage pulse with an amplitude of 50 kV 0.5 μs after a laser pulse leads to ion implantation with an energy close to 100 keV. With increasing delay in the application of the high-voltage pulse, the upper boundary of the energy spectrum of implanted ions is displaced towards lower energies. Comparison of the depth profiles of titanium distribution in silicon calculated from the results of simulation are compared with the experimental profiles shows that the model developed here correctly describes the formation of the high-energy component of the ion flow, which is responsible for defect formation and doping of deep layers of the substrate. More... »

PAGES

1475-1482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063784207110151

DOI

http://dx.doi.org/10.1134/s1063784207110151

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023989538


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevolin", 
        "givenName": "V. N.", 
        "id": "sg:person.012476536477.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fominski", 
        "givenName": "V. Yu.", 
        "id": "sg:person.015721576231.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721576231.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnedovets", 
        "givenName": "A. G.", 
        "id": "sg:person.015550453605.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Institute of Engineering Physics (State University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiselev", 
        "givenName": "G. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0042-207x(93)90241-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012119325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-207x(93)90241-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012119325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/47/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045452174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0741-3335/47/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045452174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1330558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1487863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057711696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1565822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057720862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1767982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057818119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060731491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821186"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "A mathematical model describing the dynamics of a pulsed laser plasma with multiply charged ions, as well as the formation of the accelerated ion flow in an external magnetic field, is developed. Experimental studies and mathematical simulation by the particle-in-cell method are used to determine the role of multiply charged ions in the process of ion implantation into a silicon substrate from the pulsed plasma containing singly and doubly charged titanium ions. The plasma spreads between parallel-plate electrodes (Ti target and Si substrate) along the normal to the surface of the target. Ions are accelerated by high-voltage negative pulses applied to the substrate. It is found that doubly charged ions effectively participate in the implantation process when an external electric field is applied very soon after the laser action on the target. The application of a high-voltage pulse with an amplitude of 50 kV 0.5 \u03bcs after a laser pulse leads to ion implantation with an energy close to 100 keV. With increasing delay in the application of the high-voltage pulse, the upper boundary of the energy spectrum of implanted ions is displaced towards lower energies. Comparison of the depth profiles of titanium distribution in silicon calculated from the results of simulation are compared with the experimental profiles shows that the model developed here correctly describes the formation of the high-energy component of the ion flow, which is responsible for defect formation and doping of deep layers of the substrate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063784207110151", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136240", 
        "issn": [
          "0038-5662", 
          "0044-4642"
        ], 
        "name": "Technical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Peculiarities of pulsed ion implantation from a laser plasma containing multiply charged ions", 
    "pagination": "1475-1482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "724a139d6939165ff51d3fcf92a802a2bd5f8788f22954dddf8a3d423b6948ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063784207110151"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023989538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063784207110151", 
      "https://app.dimensions.ai/details/publication/pub.1023989538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063784207110151"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063784207110151'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063784207110151'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063784207110151'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063784207110151'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063784207110151 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N82dce9b0b7d14c259412bfac632c39b1
4 schema:citation https://doi.org/10.1016/0042-207x(93)90241-2
5 https://doi.org/10.1063/1.1330558
6 https://doi.org/10.1063/1.1487863
7 https://doi.org/10.1063/1.1565822
8 https://doi.org/10.1063/1.1767982
9 https://doi.org/10.1088/0741-3335/47/8/012
10 https://doi.org/10.1103/physreve.69.056408
11 https://doi.org/10.1103/physrevlett.84.3998
12 schema:datePublished 2007-11
13 schema:datePublishedReg 2007-11-01
14 schema:description A mathematical model describing the dynamics of a pulsed laser plasma with multiply charged ions, as well as the formation of the accelerated ion flow in an external magnetic field, is developed. Experimental studies and mathematical simulation by the particle-in-cell method are used to determine the role of multiply charged ions in the process of ion implantation into a silicon substrate from the pulsed plasma containing singly and doubly charged titanium ions. The plasma spreads between parallel-plate electrodes (Ti target and Si substrate) along the normal to the surface of the target. Ions are accelerated by high-voltage negative pulses applied to the substrate. It is found that doubly charged ions effectively participate in the implantation process when an external electric field is applied very soon after the laser action on the target. The application of a high-voltage pulse with an amplitude of 50 kV 0.5 μs after a laser pulse leads to ion implantation with an energy close to 100 keV. With increasing delay in the application of the high-voltage pulse, the upper boundary of the energy spectrum of implanted ions is displaced towards lower energies. Comparison of the depth profiles of titanium distribution in silicon calculated from the results of simulation are compared with the experimental profiles shows that the model developed here correctly describes the formation of the high-energy component of the ion flow, which is responsible for defect formation and doping of deep layers of the substrate.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2e3f79b4d8d84ed4b9e7f61dcd4b6afc
19 Nb75b2f3814b54e1cbb3f32dd4f8d240b
20 sg:journal.1136240
21 schema:name Peculiarities of pulsed ion implantation from a laser plasma containing multiply charged ions
22 schema:pagination 1475-1482
23 schema:productId N4206cd0e509747a99a62a35b8ff9f044
24 N87d344429b9f4fa3bdb5527e1ac130b0
25 Nc01e4a19b3a9424f821345c2a57da0e1
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023989538
27 https://doi.org/10.1134/s1063784207110151
28 schema:sdDatePublished 2019-04-10T14:08
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nf69090f06b1e492883594716fa3b8aae
31 schema:url http://link.springer.com/10.1134%2FS1063784207110151
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1d8afa7847f84bff83cfa778e4faa970 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
36 schema:familyName Kiselev
37 schema:givenName G. A.
38 rdf:type schema:Person
39 N2e3f79b4d8d84ed4b9e7f61dcd4b6afc schema:volumeNumber 52
40 rdf:type schema:PublicationVolume
41 N4206cd0e509747a99a62a35b8ff9f044 schema:name dimensions_id
42 schema:value pub.1023989538
43 rdf:type schema:PropertyValue
44 N69021ab794184f938501694c9d77f238 rdf:first sg:person.015550453605.21
45 rdf:rest Ne614f43fd39e490692d24846c498c1b7
46 N82dce9b0b7d14c259412bfac632c39b1 rdf:first sg:person.012476536477.36
47 rdf:rest Nba4f5b57bab548a9bd2cad5359955528
48 N87d344429b9f4fa3bdb5527e1ac130b0 schema:name readcube_id
49 schema:value 724a139d6939165ff51d3fcf92a802a2bd5f8788f22954dddf8a3d423b6948ba
50 rdf:type schema:PropertyValue
51 Nb75b2f3814b54e1cbb3f32dd4f8d240b schema:issueNumber 11
52 rdf:type schema:PublicationIssue
53 Nba4f5b57bab548a9bd2cad5359955528 rdf:first sg:person.015721576231.51
54 rdf:rest N69021ab794184f938501694c9d77f238
55 Nc01e4a19b3a9424f821345c2a57da0e1 schema:name doi
56 schema:value 10.1134/s1063784207110151
57 rdf:type schema:PropertyValue
58 Ne614f43fd39e490692d24846c498c1b7 rdf:first N1d8afa7847f84bff83cfa778e4faa970
59 rdf:rest rdf:nil
60 Nf69090f06b1e492883594716fa3b8aae schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
66 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136240 schema:issn 0038-5662
69 0044-4642
70 schema:name Technical Physics
71 rdf:type schema:Periodical
72 sg:person.012476536477.36 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
73 schema:familyName Nevolin
74 schema:givenName V. N.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012476536477.36
76 rdf:type schema:Person
77 sg:person.015550453605.21 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
78 schema:familyName Gnedovets
79 schema:givenName A. G.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015550453605.21
81 rdf:type schema:Person
82 sg:person.015721576231.51 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
83 schema:familyName Fominski
84 schema:givenName V. Yu.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015721576231.51
86 rdf:type schema:Person
87 https://doi.org/10.1016/0042-207x(93)90241-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012119325
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1063/1.1330558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695554
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.1487863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711696
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.1565822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057720862
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1767982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057818119
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/0741-3335/47/8/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045452174
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physreve.69.056408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060731491
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.84.3998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821186
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
104 schema:name Moscow Institute of Engineering Physics (State University), 115409, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...