Effect of Magnetic Field Annealing on Magnetic Properties of Iron–Gallium Alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-08

AUTHORS

V. A. Lukshina, D. A. Shishkin, A. R. Kuznetsov, N. V. Ershov, Yu. N. Gornostyrev

ABSTRACT

The concentration dependence of magnetic properties of iron alloys with 3–25% of gallium is studied. It was shown that the saturation induction monotonically decreases with increasing gallium content, while the coercivity exhibits a step increase with a step from 85 to 135 A/m between 12 and 15 at % Ga. The effect of magnetic field annealing (MFA) on the behavior of the residual induction and coercive force in alloy samples containing from 3 to 18 at % Ga is studied. As a result of MFA, magnetic anisotropy is induced in the alloy: magnetic hysteresis loops become narrower, the residual induction increases, and the coercivity decreases. The MFA efficiency reaches a maximum at a Ga content of 15–18 at %. The features of the structure state of iron–gallium alloys and their role in the formation of magnetic properties during annealing in a dc magnetic field are discussed. More... »

PAGES

1746-1754

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783420100182

DOI

http://dx.doi.org/10.1134/s1063783420100182

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1131539313


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukshina", 
        "givenName": "V. A.", 
        "id": "sg:person.015101525461.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shishkin", 
        "givenName": "D. A.", 
        "id": "sg:person.013143621400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsov", 
        "givenName": "A. R.", 
        "id": "sg:person.016242341633.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242341633.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ershov", 
        "givenName": "N. V.", 
        "id": "sg:person.014304145061.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gornostyrev", 
        "givenName": "Yu. N.", 
        "id": "sg:person.0655140245.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655140245.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0031918x13060112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047985913", 
          "https://doi.org/10.1134/s0031918x13060112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783409030019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044887664", 
          "https://doi.org/10.1134/s1063783409030019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1831524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012417036", 
          "https://doi.org/10.1134/1.1831524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783412030109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001689464", 
          "https://doi.org/10.1134/s1063783412030109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106378341809010x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106801520", 
          "https://doi.org/10.1134/s106378341809010x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x06130187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201482", 
          "https://doi.org/10.1134/s0031918x06130187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783410020198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049580371", 
          "https://doi.org/10.1134/s1063783410020198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-007-2096-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046130819", 
          "https://doi.org/10.1007/s10853-007-2096-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783409060250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030129924", 
          "https://doi.org/10.1134/s1063783409060250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783419110118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122332744", 
          "https://doi.org/10.1134/s1063783419110118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783412090107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014853078", 
          "https://doi.org/10.1134/s1063783412090107"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-10-08", 
    "datePublishedReg": "2020-10-08", 
    "description": "The concentration dependence of magnetic properties of iron alloys with 3\u201325% of gallium is studied. It was shown that the saturation induction monotonically decreases with increasing gallium content, while the coercivity exhibits a step increase with a step from 85 to 135 A/m between 12 and 15 at % Ga. The effect of magnetic field annealing (MFA) on the behavior of the residual induction and coercive force in alloy samples containing from 3 to 18 at % Ga is studied. As a result of MFA, magnetic anisotropy is induced in the alloy: magnetic hysteresis loops become narrower, the residual induction increases, and the coercivity decreases. The MFA efficiency reaches a maximum at a Ga content of 15\u201318 at %. The features of the structure state of iron\u2013gallium alloys and their role in the formation of magnetic properties during annealing in a dc magnetic field are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783420100182", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "magnetic field annealing", 
      "iron-gallium alloy", 
      "magnetic properties", 
      "field annealing", 
      "saturation induction", 
      "magnetic hysteresis loops", 
      "alloy samples", 
      "magnetic anisotropy", 
      "magnetic field", 
      "residual induction", 
      "alloy", 
      "coercive force", 
      "hysteresis loops", 
      "gas content", 
      "annealing", 
      "coercivity", 
      "gallium content", 
      "structure state", 
      "step increase", 
      "properties", 
      "gas", 
      "induction increases", 
      "anisotropy", 
      "gallium", 
      "concentration dependence", 
      "efficiency", 
      "force", 
      "field", 
      "loop", 
      "content", 
      "dependence", 
      "iron", 
      "behavior", 
      "increase", 
      "effect", 
      "maximum", 
      "step", 
      "formation", 
      "results", 
      "state", 
      "samples", 
      "features", 
      "Ga.", 
      "role", 
      "induction"
    ], 
    "name": "Effect of Magnetic Field Annealing on Magnetic Properties of Iron\u2013Gallium Alloys", 
    "pagination": "1746-1754", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1131539313"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783420100182"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783420100182", 
      "https://app.dimensions.ai/details/publication/pub.1131539313"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_847.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783420100182"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783420100182'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783420100182'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783420100182'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783420100182'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      22 PREDICATES      83 URIs      62 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783420100182 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N1588ec611a18409cb662c28a96d74aa5
6 schema:citation sg:pub.10.1007/s10853-007-2096-6
7 sg:pub.10.1134/1.1831524
8 sg:pub.10.1134/s0031918x06130187
9 sg:pub.10.1134/s0031918x13060112
10 sg:pub.10.1134/s1063783409030019
11 sg:pub.10.1134/s1063783409060250
12 sg:pub.10.1134/s1063783410020198
13 sg:pub.10.1134/s1063783412030109
14 sg:pub.10.1134/s1063783412090107
15 sg:pub.10.1134/s106378341809010x
16 sg:pub.10.1134/s1063783419110118
17 schema:datePublished 2020-10-08
18 schema:datePublishedReg 2020-10-08
19 schema:description The concentration dependence of magnetic properties of iron alloys with 3–25% of gallium is studied. It was shown that the saturation induction monotonically decreases with increasing gallium content, while the coercivity exhibits a step increase with a step from 85 to 135 A/m between 12 and 15 at % Ga. The effect of magnetic field annealing (MFA) on the behavior of the residual induction and coercive force in alloy samples containing from 3 to 18 at % Ga is studied. As a result of MFA, magnetic anisotropy is induced in the alloy: magnetic hysteresis loops become narrower, the residual induction increases, and the coercivity decreases. The MFA efficiency reaches a maximum at a Ga content of 15–18 at %. The features of the structure state of iron–gallium alloys and their role in the formation of magnetic properties during annealing in a dc magnetic field are discussed.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N3c53e0fa18734cc7ae8211c512ed8e47
24 N8aed151e05af40eeb1b3ae3bfa62f581
25 sg:journal.1136591
26 schema:keywords Ga.
27 alloy
28 alloy samples
29 anisotropy
30 annealing
31 behavior
32 coercive force
33 coercivity
34 concentration dependence
35 content
36 dependence
37 effect
38 efficiency
39 features
40 field
41 field annealing
42 force
43 formation
44 gallium
45 gallium content
46 gas
47 gas content
48 hysteresis loops
49 increase
50 induction
51 induction increases
52 iron
53 iron-gallium alloy
54 loop
55 magnetic anisotropy
56 magnetic field
57 magnetic field annealing
58 magnetic hysteresis loops
59 magnetic properties
60 maximum
61 properties
62 residual induction
63 results
64 role
65 samples
66 saturation induction
67 state
68 step
69 step increase
70 structure state
71 schema:name Effect of Magnetic Field Annealing on Magnetic Properties of Iron–Gallium Alloys
72 schema:pagination 1746-1754
73 schema:productId N0e6bf78aed094dc6a8ad9bb8ad622287
74 Nf6383c5e796f463ebb915fe6af8f0cf4
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131539313
76 https://doi.org/10.1134/s1063783420100182
77 schema:sdDatePublished 2022-05-20T07:37
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Na37b5fe31dad4dc49254cb32b3e5ceb5
80 schema:url https://doi.org/10.1134/s1063783420100182
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0e6bf78aed094dc6a8ad9bb8ad622287 schema:name doi
85 schema:value 10.1134/s1063783420100182
86 rdf:type schema:PropertyValue
87 N1588ec611a18409cb662c28a96d74aa5 rdf:first sg:person.015101525461.43
88 rdf:rest Nb4d28567082d4b60b7bc67ff93fc3ee9
89 N3c53e0fa18734cc7ae8211c512ed8e47 schema:issueNumber 10
90 rdf:type schema:PublicationIssue
91 N701ae21dcf7f432c8e1afc63ab77120d rdf:first sg:person.0655140245.05
92 rdf:rest rdf:nil
93 N8aed151e05af40eeb1b3ae3bfa62f581 schema:volumeNumber 62
94 rdf:type schema:PublicationVolume
95 N9849d83dc2474e0ab4d6051d6544ac0b rdf:first sg:person.016242341633.77
96 rdf:rest Ne152cddfc2f443cfae3074ba694a3e78
97 Na37b5fe31dad4dc49254cb32b3e5ceb5 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb4d28567082d4b60b7bc67ff93fc3ee9 rdf:first sg:person.013143621400.41
100 rdf:rest N9849d83dc2474e0ab4d6051d6544ac0b
101 Ne152cddfc2f443cfae3074ba694a3e78 rdf:first sg:person.014304145061.43
102 rdf:rest N701ae21dcf7f432c8e1afc63ab77120d
103 Nf6383c5e796f463ebb915fe6af8f0cf4 schema:name dimensions_id
104 schema:value pub.1131539313
105 rdf:type schema:PropertyValue
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
110 schema:name Classical Physics
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
113 schema:name Condensed Matter Physics
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
116 schema:name Quantum Physics
117 rdf:type schema:DefinedTerm
118 sg:journal.1136591 schema:issn 0367-3294
119 1063-7834
120 schema:name Physics of the Solid State
121 schema:publisher Pleiades Publishing
122 rdf:type schema:Periodical
123 sg:person.013143621400.41 schema:affiliation grid-institutes:grid.412761.7
124 schema:familyName Shishkin
125 schema:givenName D. A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41
127 rdf:type schema:Person
128 sg:person.014304145061.43 schema:affiliation grid-institutes:grid.426536.0
129 schema:familyName Ershov
130 schema:givenName N. V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43
132 rdf:type schema:Person
133 sg:person.015101525461.43 schema:affiliation grid-institutes:grid.412761.7
134 schema:familyName Lukshina
135 schema:givenName V. A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43
137 rdf:type schema:Person
138 sg:person.016242341633.77 schema:affiliation grid-institutes:grid.412761.7
139 schema:familyName Kuznetsov
140 schema:givenName A. R.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016242341633.77
142 rdf:type schema:Person
143 sg:person.0655140245.05 schema:affiliation grid-institutes:grid.412761.7
144 schema:familyName Gornostyrev
145 schema:givenName Yu. N.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655140245.05
147 rdf:type schema:Person
148 sg:pub.10.1007/s10853-007-2096-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046130819
149 https://doi.org/10.1007/s10853-007-2096-6
150 rdf:type schema:CreativeWork
151 sg:pub.10.1134/1.1831524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012417036
152 https://doi.org/10.1134/1.1831524
153 rdf:type schema:CreativeWork
154 sg:pub.10.1134/s0031918x06130187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201482
155 https://doi.org/10.1134/s0031918x06130187
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s0031918x13060112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047985913
158 https://doi.org/10.1134/s0031918x13060112
159 rdf:type schema:CreativeWork
160 sg:pub.10.1134/s1063783409030019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044887664
161 https://doi.org/10.1134/s1063783409030019
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s1063783409060250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030129924
164 https://doi.org/10.1134/s1063783409060250
165 rdf:type schema:CreativeWork
166 sg:pub.10.1134/s1063783410020198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049580371
167 https://doi.org/10.1134/s1063783410020198
168 rdf:type schema:CreativeWork
169 sg:pub.10.1134/s1063783412030109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001689464
170 https://doi.org/10.1134/s1063783412030109
171 rdf:type schema:CreativeWork
172 sg:pub.10.1134/s1063783412090107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014853078
173 https://doi.org/10.1134/s1063783412090107
174 rdf:type schema:CreativeWork
175 sg:pub.10.1134/s106378341809010x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106801520
176 https://doi.org/10.1134/s106378341809010x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1134/s1063783419110118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122332744
179 https://doi.org/10.1134/s1063783419110118
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.412761.7 schema:alternateName Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
182 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
183 Ural Federal University Named after the first President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
184 rdf:type schema:Organization
185 grid-institutes:grid.426536.0 schema:alternateName Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
186 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...