On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 – xVxSe (0.01 ≤ x ≤ ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. I. Maksimov, E. N. Maksimova, T. P. Surkova, A. P. Vokhmyanin

ABSTRACT

The systematic new formations observed in the reciprocal lattice of the cubic structural modification of a II–VI compound are characterized using a detailed neutron diffraction study of bulk semiconducting ZnSe crystals with an increased vanadium content. Direct evidence that the additional sites k = (1/3 1/3 1/3) 2π/a (k is the wave vector and a is cubic unit cell parameter) observed by neutron scattering in the crystals, in the case when they belong to mutually penetrated rotated sublattices, contain a superstructure contribution formed by short-wave deformation, is obtained for the first time. This structure state is determined as a pretransition to the concentration fcc–hcp phase transformation, and the basis functions that allow one to analyze atomic displacements, the correlation between which create distortion-type superstructures, are indicated for the transition through one-arm channel, considering the transitions by the star of wave vector k5 of the fcc lattice. More... »

PAGES

2424-2435

References to SciGraph publications

  • 2006-12. Inhomogeneous lattice distortions in a Zn1 − xCrxSe crystal in PHYSICS OF THE SOLID STATE
  • 2007-07. Nanoscale distortions of the lattice of a ZnSe crystal doped with 3d elements in PHYSICS OF THE SOLID STATE
  • 2014-12. Fine features of the crystal structure of the semiconductor cubic single crystal Zn0.9V0.1Se in PHYSICS OF THE SOLID STATE
  • 2011. Experimental Evaluation of the Jahn-Teller Effect Parameters by Means of Ultrasonic Measurements. Application to Impurity Centers in Crystals in VIBRONIC INTERACTIONS AND THE JAHN-TELLER EFFECT
  • 2011-07. Fine structure and magnetism of the cubic oxide compound Ni0.3Zn0.7O in PHYSICS OF THE SOLID STATE
  • 2018-01. Variability of the resulting microdeformation field in the Zn1 – xVxSe crystals (0.01 ≤ x ≤ 0.10) in PHYSICS OF THE SOLID STATE
  • 2013-01. Neutron diffraction study of the nano-inhomogeneities of the sphalerite crystal structure induced by magnetoactive 3d ions in II–VI solid solutions in JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES
  • 2017-05. Room temperature ferromagnetism in single-phase Zn1−xMnxS diluted magnetic semiconductors fabricated by co-precipitation technique in APPLIED PHYSICS A
  • 2016-01. Superstructures in cubic AIIBVI crystals heavily doped with Ni and V ions in CRYSTALLOGRAPHY REPORTS
  • 2013-10. Fine structure and magnetism of bulk Zn1 − xCrxSe single-crystal cubic compounds (0 ≤ x ≤ 0.045) in PHYSICS OF THE SOLID STATE
  • 2002-11. Intracenter transitions of iron-group ions in II–VI semiconductor matrices in PHYSICS OF THE SOLID STATE
  • 2013-09. Structural state of metastable cubic compounds Ni1 − xZnxO (0.6 ≤ x ≤ 0.99) in PHYSICS OF METALS AND METALLOGRAPHY
  • 2014-05. Fine structure of the cubic semiconductor compound Zn0.9Ni0.1S in PHYSICS OF THE SOLID STATE
  • 2010. Introduction to the Physics of Diluted Magnetic Semiconductors in NONE
  • 2016-04. An inhomogeneously distorted state of the crystal structure of a Zn0.95Fe0.05Se cubic crystal in PHYSICS OF THE SOLID STATE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063783419010177

    DOI

    http://dx.doi.org/10.1134/s1063783419010177

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111953562


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maksimov", 
            "givenName": "V. I.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maksimova", 
            "givenName": "E. N.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Surkova", 
            "givenName": "T. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vokhmyanin", 
            "givenName": "A. P.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063783411070092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000667885", 
              "https://doi.org/10.1134/s1063783411070092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783413100223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000761696", 
              "https://doi.org/10.1134/s1063783413100223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783414120221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007625579", 
              "https://doi.org/10.1134/s1063783414120221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5408(84)90138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007974558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5408(84)90138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007974558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssc.201510231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008363905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-2384-9_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009108675", 
              "https://doi.org/10.1007/978-94-007-2384-9_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lpor.200810076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010799060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lpor.200810076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010799060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spmi.2015.04.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011411532"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/phys-2016-0068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011857856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063774516010120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015042832", 
              "https://doi.org/10.1134/s1063774516010120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1521450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023779645", 
              "https://doi.org/10.1134/1.1521450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pssc.201100590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024353795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1027451013010278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027528344", 
              "https://doi.org/10.1134/s1027451013010278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2138/rmg.2006.61.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028807924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15856-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030156777", 
              "https://doi.org/10.1007/978-3-642-15856-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15856-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030156777", 
              "https://doi.org/10.1007/978-3-642-15856-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783414050175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031476013", 
              "https://doi.org/10.1134/s1063783414050175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0031918x13060094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033272109", 
              "https://doi.org/10.1134/s0031918x13060094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783406120067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034001850", 
              "https://doi.org/10.1134/s1063783406120067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783416040144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036560296", 
              "https://doi.org/10.1134/s1063783416040144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcrysgro.2007.10.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037343952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0146-3535(87)90017-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037901204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0146-3535(87)90017-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037901204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jssc.1995.1054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038551590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039972751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.86.187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039972751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783407070062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040700158", 
              "https://doi.org/10.1134/s1063783407070062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3051186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057900549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.46.10086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060562439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.46.10086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060562439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00339-017-0975-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084819966", 
              "https://doi.org/10.1007/s00339-017-0975-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00339-017-0975-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084819966", 
              "https://doi.org/10.1007/s00339-017-0975-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.7b02953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085370746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18520/cs/v112/i07/1421-1429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085976596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3938/jkps.53.63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100312745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783418010122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100620818", 
              "https://doi.org/10.1134/s1063783418010122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solener.2018.02.074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101526410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0256-307x/35/3/037801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101574855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12693/aphyspola.133.450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101867506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109701504", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781119961468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109701504"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "The systematic new formations observed in the reciprocal lattice of the cubic structural modification of a II\u2013VI compound are characterized using a detailed neutron diffraction study of bulk semiconducting ZnSe crystals with an increased vanadium content. Direct evidence that the additional sites k = (1/3 1/3 1/3) 2\u03c0/a (k is the wave vector and a is cubic unit cell parameter) observed by neutron scattering in the crystals, in the case when they belong to mutually penetrated rotated sublattices, contain a superstructure contribution formed by short-wave deformation, is obtained for the first time. This structure state is determined as a pretransition to the concentration fcc\u2013hcp phase transformation, and the basis functions that allow one to analyze atomic displacements, the correlation between which create distortion-type superstructures, are indicated for the transition through one-arm channel, considering the transitions by the star of wave vector k5 of the fcc lattice.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063783419010177", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136591", 
            "issn": [
              "0367-3294", 
              "1063-7834"
            ], 
            "name": "Physics of the Solid State", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "60"
          }
        ], 
        "name": "On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 \u2013 xVxSe (0.01 \u2264 x \u2264 0.10) Crystals", 
        "pagination": "2424-2435", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dc934151b5eb115c9cb26ba4989c8bb7f8b47c2c39bc654cf09ce63a42354b73"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063783419010177"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111953562"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063783419010177", 
          "https://app.dimensions.ai/details/publication/pub.1111953562"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105424_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS1063783419010177"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783419010177'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783419010177'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783419010177'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783419010177'


     

    This table displays all metadata directly associated to this object as RDF triples.

    200 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063783419010177 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N2c37107846f941cfbfdcd0cda03f6fd4
    4 schema:citation sg:pub.10.1007/978-3-642-15856-8
    5 sg:pub.10.1007/978-94-007-2384-9_7
    6 sg:pub.10.1007/s00339-017-0975-5
    7 sg:pub.10.1134/1.1521450
    8 sg:pub.10.1134/s0031918x13060094
    9 sg:pub.10.1134/s1027451013010278
    10 sg:pub.10.1134/s1063774516010120
    11 sg:pub.10.1134/s1063783406120067
    12 sg:pub.10.1134/s1063783407070062
    13 sg:pub.10.1134/s1063783411070092
    14 sg:pub.10.1134/s1063783413100223
    15 sg:pub.10.1134/s1063783414050175
    16 sg:pub.10.1134/s1063783414120221
    17 sg:pub.10.1134/s1063783416040144
    18 sg:pub.10.1134/s1063783418010122
    19 https://app.dimensions.ai/details/publication/pub.1109701504
    20 https://doi.org/10.1002/9781119961468
    21 https://doi.org/10.1002/lpor.200810076
    22 https://doi.org/10.1002/pssc.201100590
    23 https://doi.org/10.1002/pssc.201510231
    24 https://doi.org/10.1006/jssc.1995.1054
    25 https://doi.org/10.1016/0025-5408(84)90138-7
    26 https://doi.org/10.1016/0146-3535(87)90017-7
    27 https://doi.org/10.1016/j.jcrysgro.2007.10.013
    28 https://doi.org/10.1016/j.solener.2018.02.074
    29 https://doi.org/10.1016/j.spmi.2015.04.016
    30 https://doi.org/10.1021/jacs.7b02953
    31 https://doi.org/10.1063/1.3051186
    32 https://doi.org/10.1088/0256-307x/35/3/037801
    33 https://doi.org/10.1103/physrevb.46.10086
    34 https://doi.org/10.1103/revmodphys.86.187
    35 https://doi.org/10.12693/aphyspola.133.450
    36 https://doi.org/10.1515/phys-2016-0068
    37 https://doi.org/10.18520/cs/v112/i07/1421-1429
    38 https://doi.org/10.2138/rmg.2006.61.2
    39 https://doi.org/10.3938/jkps.53.63
    40 schema:datePublished 2018-12
    41 schema:datePublishedReg 2018-12-01
    42 schema:description The systematic new formations observed in the reciprocal lattice of the cubic structural modification of a II–VI compound are characterized using a detailed neutron diffraction study of bulk semiconducting ZnSe crystals with an increased vanadium content. Direct evidence that the additional sites k = (1/3 1/3 1/3) 2π/a (k is the wave vector and a is cubic unit cell parameter) observed by neutron scattering in the crystals, in the case when they belong to mutually penetrated rotated sublattices, contain a superstructure contribution formed by short-wave deformation, is obtained for the first time. This structure state is determined as a pretransition to the concentration fcc–hcp phase transformation, and the basis functions that allow one to analyze atomic displacements, the correlation between which create distortion-type superstructures, are indicated for the transition through one-arm channel, considering the transitions by the star of wave vector k5 of the fcc lattice.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree false
    46 schema:isPartOf N1402999483b44981a1b3122ee8ff72a8
    47 Nd9f6b5705e9a485b98aa155fed014339
    48 sg:journal.1136591
    49 schema:name On Possible States of the Crystal Structure Preceding to a Phase Transition in Zn1 – xVxSe (0.01 ≤ x ≤ 0.10) Crystals
    50 schema:pagination 2424-2435
    51 schema:productId N735abdd04aed42adbfb46533d25dec91
    52 Na5608f546dec47e4b9e9b7aa4133d081
    53 Ndd5b0ff008a24aa0bb3d3923386192ca
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953562
    55 https://doi.org/10.1134/s1063783419010177
    56 schema:sdDatePublished 2019-04-11T09:02
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N3f044fc810f047358184cc655e3929bb
    59 schema:url https://link.springer.com/10.1134%2FS1063783419010177
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N1402999483b44981a1b3122ee8ff72a8 schema:volumeNumber 60
    64 rdf:type schema:PublicationVolume
    65 N1f8df781bc9b4f30bf8fa57088ba3578 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    66 schema:familyName Vokhmyanin
    67 schema:givenName A. P.
    68 rdf:type schema:Person
    69 N2c37107846f941cfbfdcd0cda03f6fd4 rdf:first Ne93b440ca5eb4afbb3cdc1b9d04f45c2
    70 rdf:rest N632249ccb2994663b7f585043f6d7e35
    71 N3d76954e47a94740ab8c31a34d76a211 rdf:first N1f8df781bc9b4f30bf8fa57088ba3578
    72 rdf:rest rdf:nil
    73 N3f044fc810f047358184cc655e3929bb schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N40f3904e69b74c0087d5179a71629637 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    76 schema:familyName Maksimova
    77 schema:givenName E. N.
    78 rdf:type schema:Person
    79 N45eab8911f954d83b19f355bb4cc7651 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    80 schema:familyName Surkova
    81 schema:givenName T. P.
    82 rdf:type schema:Person
    83 N632249ccb2994663b7f585043f6d7e35 rdf:first N40f3904e69b74c0087d5179a71629637
    84 rdf:rest Nf37bb54436c14626bc6a2484a791af55
    85 N735abdd04aed42adbfb46533d25dec91 schema:name readcube_id
    86 schema:value dc934151b5eb115c9cb26ba4989c8bb7f8b47c2c39bc654cf09ce63a42354b73
    87 rdf:type schema:PropertyValue
    88 Na5608f546dec47e4b9e9b7aa4133d081 schema:name doi
    89 schema:value 10.1134/s1063783419010177
    90 rdf:type schema:PropertyValue
    91 Nd9f6b5705e9a485b98aa155fed014339 schema:issueNumber 12
    92 rdf:type schema:PublicationIssue
    93 Ndd5b0ff008a24aa0bb3d3923386192ca schema:name dimensions_id
    94 schema:value pub.1111953562
    95 rdf:type schema:PropertyValue
    96 Ne93b440ca5eb4afbb3cdc1b9d04f45c2 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    97 schema:familyName Maksimov
    98 schema:givenName V. I.
    99 rdf:type schema:Person
    100 Nf37bb54436c14626bc6a2484a791af55 rdf:first N45eab8911f954d83b19f355bb4cc7651
    101 rdf:rest N3d76954e47a94740ab8c31a34d76a211
    102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Physical Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Other Physical Sciences
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1136591 schema:issn 0367-3294
    109 1063-7834
    110 schema:name Physics of the Solid State
    111 rdf:type schema:Periodical
    112 sg:pub.10.1007/978-3-642-15856-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030156777
    113 https://doi.org/10.1007/978-3-642-15856-8
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-94-007-2384-9_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009108675
    116 https://doi.org/10.1007/978-94-007-2384-9_7
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00339-017-0975-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084819966
    119 https://doi.org/10.1007/s00339-017-0975-5
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1134/1.1521450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023779645
    122 https://doi.org/10.1134/1.1521450
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1134/s0031918x13060094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033272109
    125 https://doi.org/10.1134/s0031918x13060094
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1134/s1027451013010278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027528344
    128 https://doi.org/10.1134/s1027451013010278
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1134/s1063774516010120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015042832
    131 https://doi.org/10.1134/s1063774516010120
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1134/s1063783406120067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034001850
    134 https://doi.org/10.1134/s1063783406120067
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1134/s1063783407070062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040700158
    137 https://doi.org/10.1134/s1063783407070062
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1134/s1063783411070092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000667885
    140 https://doi.org/10.1134/s1063783411070092
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1134/s1063783413100223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000761696
    143 https://doi.org/10.1134/s1063783413100223
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1134/s1063783414050175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031476013
    146 https://doi.org/10.1134/s1063783414050175
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1134/s1063783414120221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007625579
    149 https://doi.org/10.1134/s1063783414120221
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1134/s1063783416040144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036560296
    152 https://doi.org/10.1134/s1063783416040144
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1134/s1063783418010122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100620818
    155 https://doi.org/10.1134/s1063783418010122
    156 rdf:type schema:CreativeWork
    157 https://app.dimensions.ai/details/publication/pub.1109701504 schema:CreativeWork
    158 https://doi.org/10.1002/9781119961468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109701504
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1002/lpor.200810076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010799060
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/pssc.201100590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024353795
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/pssc.201510231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008363905
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1006/jssc.1995.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038551590
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/0025-5408(84)90138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007974558
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/0146-3535(87)90017-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037901204
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.jcrysgro.2007.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037343952
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.solener.2018.02.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101526410
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.spmi.2015.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011411532
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/jacs.7b02953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085370746
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1063/1.3051186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057900549
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1088/0256-307x/35/3/037801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101574855
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevb.46.10086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562439
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/revmodphys.86.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039972751
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.12693/aphyspola.133.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101867506
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1515/phys-2016-0068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011857856
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.18520/cs/v112/i07/1421-1429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085976596
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.2138/rmg.2006.61.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028807924
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.3938/jkps.53.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100312745
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    199 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia
    200 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...