Haven Correlation Parameter for Diffusion of Fluorine in Superionic Conductors La1 – ySryF3 – y View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

N. I. Sorokin

ABSTRACT

The processes of electric charge transfer (conductivity) and mass transfer (diffusion) in La1 ‒ ySryF3 – y superionic conductors are determined by mobile fluorine ions. The fluorine random-diffusion coefficients Dσ have been calculated from experimental data on the ionic conductivity σdc for La1 ‒ ySryF3 – y single crystals at the SrF2 dopant contents of 1, 3, 5, 7.5, 10, and 15 mol %. A maximum in the region of 3–5 mol % SrF2 is observed in the dependence Dσ(y). The value of the Haven correlation parameter Hr = DNMR/Dσ (DNMR is the fluorine diffusion coefficient measured by NMR on 19F nuclei) is determined; it characterizes the ion transport mechanism in La1 – ySryF3 – y crystals. The Hr values are 0.75 ± 0.15, 0.45 ± 0.15, and 0.65 ± 0.15 at 400–800 K for 1, 3, and 15–16 mol % SrF2, respectively. Superionic conductor La0.97Sr0.03F2.97 with maximum σdc and Dσ values has a minimum Haven parameter. The obtained Hr values indicate that fluorine diffusion in superionic conductors La1 – ySryF3 – y goes not according to the vacancy mechanism involving single vacancies but by cooperative motion of F– conduction ions. More... »

PAGES

2436-2439

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783418120260

DOI

http://dx.doi.org/10.1134/s1063783418120260

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953548


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics,\u201d \nRussian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokin", 
        "givenName": "N. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0040-6031(85)85329-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000304829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9585401498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001020767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774507050148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004582692", 
          "https://doi.org/10.1134/s1063774507050148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/5/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005984756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/5/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005984756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774514060273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010071504", 
          "https://doi.org/10.1134/s1063774514060273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssnmr.2007.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016437598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783408030037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025271429", 
          "https://doi.org/10.1134/s1063783408030037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1023193507040064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026459871", 
          "https://doi.org/10.1134/s1023193507040064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssi.2008.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026609007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4596(81)90268-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035596631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774507010154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039661992", 
          "https://doi.org/10.1134/s1063774507010154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3697(03)00050-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039676570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3697(03)00050-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039676570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774515030050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040034354", 
          "https://doi.org/10.1134/s1063774515030050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9565200786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052090560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100850a035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055682214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/11/15/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058956974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.3180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1974325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062244734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The processes of electric charge transfer (conductivity) and mass transfer (diffusion) in La1 \u2012 ySryF3 \u2013 y superionic conductors are determined by mobile fluorine ions. The fluorine random-diffusion coefficients D\u03c3 have been calculated from experimental data on the ionic conductivity \u03c3dc for La1 \u2012 ySryF3 \u2013 y single crystals at the SrF2 dopant contents of 1, 3, 5, 7.5, 10, and 15 mol %. A maximum in the region of 3\u20135 mol % SrF2 is observed in the dependence D\u03c3(y). The value of the Haven correlation parameter Hr = DNMR/D\u03c3 (DNMR is the fluorine diffusion coefficient measured by NMR on 19F nuclei) is determined; it characterizes the ion transport mechanism in La1 \u2013 ySryF3 \u2013 y crystals. The Hr values are 0.75 \u00b1 0.15, 0.45 \u00b1 0.15, and 0.65 \u00b1 0.15 at 400\u2013800 K for 1, 3, and 15\u201316 mol % SrF2, respectively. Superionic conductor La0.97Sr0.03F2.97 with maximum \u03c3dc and D\u03c3 values has a minimum Haven parameter. The obtained Hr values indicate that fluorine diffusion in superionic conductors La1 \u2013 ySryF3 \u2013 y goes not according to the vacancy mechanism involving single vacancies but by cooperative motion of F\u2013 conduction ions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783418120260", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Haven Correlation Parameter for Diffusion of Fluorine in Superionic Conductors La1 \u2013 ySryF3 \u2013 y", 
    "pagination": "2436-2439", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0f30f69f74418296b97db7f15eee27348ed764c16beb078accb2cab8af54de64"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783418120260"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953548"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783418120260", 
      "https://app.dimensions.ai/details/publication/pub.1111953548"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105427_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063783418120260"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120260'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120260'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120260'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120260'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783418120260 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N56c879abff28422fb330ac8fcaa493c5
4 schema:citation sg:pub.10.1134/s1023193507040064
5 sg:pub.10.1134/s1063774507010154
6 sg:pub.10.1134/s1063774507050148
7 sg:pub.10.1134/s1063774514060273
8 sg:pub.10.1134/s1063774515030050
9 sg:pub.10.1134/s1063783408030037
10 https://doi.org/10.1016/0022-4596(81)90268-1
11 https://doi.org/10.1016/0040-6031(85)85329-6
12 https://doi.org/10.1016/j.ssi.2008.10.003
13 https://doi.org/10.1016/j.ssnmr.2007.04.002
14 https://doi.org/10.1016/s0022-3697(03)00050-7
15 https://doi.org/10.1021/j100850a035
16 https://doi.org/10.1039/tf9565200786
17 https://doi.org/10.1039/tf9585401498
18 https://doi.org/10.1088/0022-3719/11/15/020
19 https://doi.org/10.1088/0953-8984/18/5/025
20 https://doi.org/10.1103/physrevb.43.3180
21 https://doi.org/10.1119/1.1974325
22 schema:datePublished 2018-12
23 schema:datePublishedReg 2018-12-01
24 schema:description The processes of electric charge transfer (conductivity) and mass transfer (diffusion) in La1 ‒ ySryF3 – y superionic conductors are determined by mobile fluorine ions. The fluorine random-diffusion coefficients Dσ have been calculated from experimental data on the ionic conductivity σdc for La1 ‒ ySryF3 – y single crystals at the SrF2 dopant contents of 1, 3, 5, 7.5, 10, and 15 mol %. A maximum in the region of 3–5 mol % SrF2 is observed in the dependence Dσ(y). The value of the Haven correlation parameter Hr = DNMR/Dσ (DNMR is the fluorine diffusion coefficient measured by NMR on 19F nuclei) is determined; it characterizes the ion transport mechanism in La1 – ySryF3 – y crystals. The Hr values are 0.75 ± 0.15, 0.45 ± 0.15, and 0.65 ± 0.15 at 400–800 K for 1, 3, and 15–16 mol % SrF2, respectively. Superionic conductor La0.97Sr0.03F2.97 with maximum σdc and Dσ values has a minimum Haven parameter. The obtained Hr values indicate that fluorine diffusion in superionic conductors La1 – ySryF3 – y goes not according to the vacancy mechanism involving single vacancies but by cooperative motion of F– conduction ions.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N4e2668b3eff543eebda55489b08e6083
29 N64e1962f330c4cddaa832e969de6723c
30 sg:journal.1136591
31 schema:name Haven Correlation Parameter for Diffusion of Fluorine in Superionic Conductors La1 – ySryF3 – y
32 schema:pagination 2436-2439
33 schema:productId N33c88c2880654d86885008d6a6ffd9eb
34 Nb0d0ddfa397544bda4353e758fda68d3
35 Nbb0895bb8b674f4a9dcd9b8add5994be
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953548
37 https://doi.org/10.1134/s1063783418120260
38 schema:sdDatePublished 2019-04-11T09:02
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nbe34c4a3ae344fe09a4290e0bc6e9dc2
41 schema:url https://link.springer.com/10.1134%2FS1063783418120260
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0afd1593f3f44436960b1c3dc0d671a8 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
46 schema:familyName Sorokin
47 schema:givenName N. I.
48 rdf:type schema:Person
49 N33c88c2880654d86885008d6a6ffd9eb schema:name doi
50 schema:value 10.1134/s1063783418120260
51 rdf:type schema:PropertyValue
52 N4e2668b3eff543eebda55489b08e6083 schema:volumeNumber 60
53 rdf:type schema:PublicationVolume
54 N56c879abff28422fb330ac8fcaa493c5 rdf:first N0afd1593f3f44436960b1c3dc0d671a8
55 rdf:rest rdf:nil
56 N64e1962f330c4cddaa832e969de6723c schema:issueNumber 12
57 rdf:type schema:PublicationIssue
58 Nb0d0ddfa397544bda4353e758fda68d3 schema:name dimensions_id
59 schema:value pub.1111953548
60 rdf:type schema:PropertyValue
61 Nbb0895bb8b674f4a9dcd9b8add5994be schema:name readcube_id
62 schema:value 0f30f69f74418296b97db7f15eee27348ed764c16beb078accb2cab8af54de64
63 rdf:type schema:PropertyValue
64 Nbe34c4a3ae344fe09a4290e0bc6e9dc2 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
67 schema:name Chemical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Chemistry (incl. Structural)
71 rdf:type schema:DefinedTerm
72 sg:journal.1136591 schema:issn 0367-3294
73 1063-7834
74 schema:name Physics of the Solid State
75 rdf:type schema:Periodical
76 sg:pub.10.1134/s1023193507040064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026459871
77 https://doi.org/10.1134/s1023193507040064
78 rdf:type schema:CreativeWork
79 sg:pub.10.1134/s1063774507010154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039661992
80 https://doi.org/10.1134/s1063774507010154
81 rdf:type schema:CreativeWork
82 sg:pub.10.1134/s1063774507050148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582692
83 https://doi.org/10.1134/s1063774507050148
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s1063774514060273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010071504
86 https://doi.org/10.1134/s1063774514060273
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s1063774515030050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040034354
89 https://doi.org/10.1134/s1063774515030050
90 rdf:type schema:CreativeWork
91 sg:pub.10.1134/s1063783408030037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025271429
92 https://doi.org/10.1134/s1063783408030037
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0022-4596(81)90268-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035596631
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0040-6031(85)85329-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000304829
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.ssi.2008.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026609007
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.ssnmr.2007.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016437598
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0022-3697(03)00050-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039676570
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/j100850a035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055682214
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1039/tf9565200786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052090560
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1039/tf9585401498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001020767
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0022-3719/11/15/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058956974
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1088/0953-8984/18/5/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005984756
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.43.3180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557380
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1119/1.1974325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062244734
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
119 schema:name Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...