The Nonuniversality of the Frequency Dependence of the Conductivity in Disordered Nanogranulated Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

M. A. Ormont, I. P. Zvyagin

ABSTRACT

The real part of the high-frequency phononless conductivity is calculated in the pair approximation for a disordered array of densely packed spherical nanogranules. The generalization of the theory of phononless conductivity for systems with point impurities to systems with localized finite sizes (arrays of nanogranules or quantum dots) reveals that the high-frequency conductivity depends on the distribution function of the distances between the surfaces of granules P(w). This is expected to cause the discrepancy of the real part of the conductivity σ1(ω) from the linear frequency dependence. In the vicinity of the frequency ω ~ ωc = 2I0/ (here I0 is a preexponential factor of the resonance integral) for disordered granulated systems is likely to deviate from the universality σ1(ω) ~ ωs (s ≈ 1) due to the attenuation of the frequency dependence σ1(ω) of the conductivity and its nonmonotonicity. The nonmonotonicity of σ1(ω) must arise at lower frequencies as a result of decreased preexponential factor I0 of the resonance integral with increasing granule size. More... »

PAGES

2408-2417

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783418120223

DOI

http://dx.doi.org/10.1134/s1063783418120223

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ormont", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvyagin", 
        "givenName": "I. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-3697(02)00368-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000093309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3697(02)00368-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000093309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642810108205782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010163534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642810108205786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017880246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56120-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736304", 
          "https://doi.org/10.1007/978-3-642-56120-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56120-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018736304", 
          "https://doi.org/10.1007/978-3-642-56120-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0027134908040115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022396870", 
          "https://doi.org/10.3103/s0027134908040115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615040156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024360657", 
          "https://doi.org/10.1134/s1063782615040156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615100206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026199990", 
          "https://doi.org/10.1134/s1063782615100206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028724448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786437008228147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029201645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418638108222349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038456600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200562739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038802178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200562739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038802178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736900101267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041351306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736900101267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041351306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.014201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048784381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.014201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048784381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.122.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.122.1742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r15116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.r15116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.056402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.056402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782618020100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100820714", 
          "https://doi.org/10.1134/s1063782618020100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783418050232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104151557", 
          "https://doi.org/10.1134/s1063783418050232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The real part of the high-frequency phononless conductivity is calculated in the pair approximation for a disordered array of densely packed spherical nanogranules. The generalization of the theory of phononless conductivity for systems with point impurities to systems with localized finite sizes (arrays of nanogranules or quantum dots) reveals that the high-frequency conductivity depends on the distribution function of the distances between the surfaces of granules P(w). This is expected to cause the discrepancy of the real part of the conductivity \u03c31(\u03c9) from the linear frequency dependence. In the vicinity of the frequency \u03c9 ~ \u03c9c = 2I0/ (here I0 is a preexponential factor of the resonance integral) for disordered granulated systems is likely to deviate from the universality \u03c31(\u03c9) ~ \u03c9s (s \u2248 1) due to the attenuation of the frequency dependence \u03c31(\u03c9) of the conductivity and its nonmonotonicity. The nonmonotonicity of \u03c31(\u03c9) must arise at lower frequencies as a result of decreased preexponential factor I0 of the resonance integral with increasing granule size.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783418120223", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "The Nonuniversality of the Frequency Dependence of the Conductivity in Disordered Nanogranulated Systems", 
    "pagination": "2408-2417", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d494476b67cac6193af2239c87bed7914d7a2c654fc8adb8dc51eb7ced69f74b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783418120223"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953544"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783418120223", 
      "https://app.dimensions.ai/details/publication/pub.1111953544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105422_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063783418120223"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120223'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120223'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120223'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120223'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783418120223 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N3923448dce1c459aac1d5bb6d53ea9d9
4 schema:citation sg:pub.10.1007/978-3-642-56120-7
5 sg:pub.10.1134/s1063782615040156
6 sg:pub.10.1134/s1063782615100206
7 sg:pub.10.1134/s1063782618020100
8 sg:pub.10.1134/s1063783418050232
9 sg:pub.10.3103/s0027134908040115
10 https://doi.org/10.1002/pssc.200562739
11 https://doi.org/10.1016/s0022-3697(02)00368-2
12 https://doi.org/10.1080/00018736900101267
13 https://doi.org/10.1080/01418638108222349
14 https://doi.org/10.1080/13642810108205782
15 https://doi.org/10.1080/13642810108205786
16 https://doi.org/10.1080/14786437008228147
17 https://doi.org/10.1103/physrev.122.1742
18 https://doi.org/10.1103/physrevb.57.r15116
19 https://doi.org/10.1103/physrevb.69.014201
20 https://doi.org/10.1103/physrevb.75.205203
21 https://doi.org/10.1103/physrevlett.87.056402
22 schema:datePublished 2018-12
23 schema:datePublishedReg 2018-12-01
24 schema:description The real part of the high-frequency phononless conductivity is calculated in the pair approximation for a disordered array of densely packed spherical nanogranules. The generalization of the theory of phononless conductivity for systems with point impurities to systems with localized finite sizes (arrays of nanogranules or quantum dots) reveals that the high-frequency conductivity depends on the distribution function of the distances between the surfaces of granules P(w). This is expected to cause the discrepancy of the real part of the conductivity σ1(ω) from the linear frequency dependence. In the vicinity of the frequency ω ~ ωc = 2I0/ (here I0 is a preexponential factor of the resonance integral) for disordered granulated systems is likely to deviate from the universality σ1(ω) ~ ωs (s ≈ 1) due to the attenuation of the frequency dependence σ1(ω) of the conductivity and its nonmonotonicity. The nonmonotonicity of σ1(ω) must arise at lower frequencies as a result of decreased preexponential factor I0 of the resonance integral with increasing granule size.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N7b7cbbd71c0a4cc1a352a748726bce20
29 N8c46535a00ed45f2b8e70c3c1830e7c8
30 sg:journal.1136591
31 schema:name The Nonuniversality of the Frequency Dependence of the Conductivity in Disordered Nanogranulated Systems
32 schema:pagination 2408-2417
33 schema:productId N3fbe6702daff4637bd86116c4d25bf41
34 N4194a22f6e90459da7d7fb07f549dc98
35 N4cbf9e1a9c3a452faae16173f61440ea
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953544
37 https://doi.org/10.1134/s1063783418120223
38 schema:sdDatePublished 2019-04-11T09:02
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nbde3a771586b403cb6727b77f0cd11bc
41 schema:url https://link.springer.com/10.1134%2FS1063783418120223
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N225248600af1491db214e1abbf656e17 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
46 schema:familyName Zvyagin
47 schema:givenName I. P.
48 rdf:type schema:Person
49 N3923448dce1c459aac1d5bb6d53ea9d9 rdf:first Nc49d23407b13470fb50e8651ceea43f6
50 rdf:rest Ndd926ca77635421887e234fbeb32bddd
51 N3fbe6702daff4637bd86116c4d25bf41 schema:name dimensions_id
52 schema:value pub.1111953544
53 rdf:type schema:PropertyValue
54 N4194a22f6e90459da7d7fb07f549dc98 schema:name doi
55 schema:value 10.1134/s1063783418120223
56 rdf:type schema:PropertyValue
57 N4cbf9e1a9c3a452faae16173f61440ea schema:name readcube_id
58 schema:value d494476b67cac6193af2239c87bed7914d7a2c654fc8adb8dc51eb7ced69f74b
59 rdf:type schema:PropertyValue
60 N7b7cbbd71c0a4cc1a352a748726bce20 schema:issueNumber 12
61 rdf:type schema:PublicationIssue
62 N8c46535a00ed45f2b8e70c3c1830e7c8 schema:volumeNumber 60
63 rdf:type schema:PublicationVolume
64 Nbde3a771586b403cb6727b77f0cd11bc schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nc49d23407b13470fb50e8651ceea43f6 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
67 schema:familyName Ormont
68 schema:givenName M. A.
69 rdf:type schema:Person
70 Ndd926ca77635421887e234fbeb32bddd rdf:first N225248600af1491db214e1abbf656e17
71 rdf:rest rdf:nil
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
76 schema:name Electrical and Electronic Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136591 schema:issn 0367-3294
79 1063-7834
80 schema:name Physics of the Solid State
81 rdf:type schema:Periodical
82 sg:pub.10.1007/978-3-642-56120-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018736304
83 https://doi.org/10.1007/978-3-642-56120-7
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s1063782615040156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024360657
86 https://doi.org/10.1134/s1063782615040156
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s1063782615100206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026199990
89 https://doi.org/10.1134/s1063782615100206
90 rdf:type schema:CreativeWork
91 sg:pub.10.1134/s1063782618020100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100820714
92 https://doi.org/10.1134/s1063782618020100
93 rdf:type schema:CreativeWork
94 sg:pub.10.1134/s1063783418050232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104151557
95 https://doi.org/10.1134/s1063783418050232
96 rdf:type schema:CreativeWork
97 sg:pub.10.3103/s0027134908040115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022396870
98 https://doi.org/10.3103/s0027134908040115
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/pssc.200562739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038802178
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0022-3697(02)00368-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000093309
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/00018736900101267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041351306
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/01418638108222349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038456600
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/13642810108205782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010163534
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1080/13642810108205786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017880246
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/14786437008228147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029201645
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrev.122.1742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424012
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.57.r15116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060588688
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.69.014201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048784381
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.75.205203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028724448
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.87.056402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823499
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
125 schema:name Moscow State University, Moscow, Russia
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...