Effects of Magnetic Ordering in Conductivity and Magnetization of GaAs-Based Semiconductor Heterostructures upon Changing the Concentration of the Delta-Layer of ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

K. D. Moiseev, Yu. A. Kudryavtsev, T. B. Charikova, A. M. Lugovykh, T. E. Govorkova, V. I. Okulov

ABSTRACT

Characteristic effects of magnetic ordering and conduction in semiconductor heterostructures with a GaAs : Be/Ga0.84In0.16As/GaAs quantum well and manganese δ-layers of different thickness (from 0.4 to 2 monolayers) were studied based on analysis of magnetic field and temperature dependences, galvanomagnetic effects, and magnetization. An anomalous dependence of the conductivity on the manganese atoms concentration in the δ-layer was observed, which was due to a strong scattering of charge carriers in the structures with the low content of magnetic impurities. Magnetic properties of the heterostructures clearly indicated the magnetic ordering of the impurity system (saturation and hysteresis of the magnetization and fulfillment of the Curie–Weiss law at increasing temperature). Parameters of the magnetic subsystem allowed revealing different types of ordering in the systems with different concentrations of the magnetic impurity. Changing the concentration of the Mn admixture in the δ-layer was shown to influence significantly the conductivity and magnetism in the studied structures. More... »

PAGES

2402-2407

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783418120211

DOI

http://dx.doi.org/10.1134/s1063783418120211

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moiseev", 
        "givenName": "K. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional", 
          "id": "https://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "National Polytechnic Institute SINVESTAV, 07360, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryavtsev", 
        "givenName": "Yu. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charikova", 
        "givenName": "T. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lugovykh", 
        "givenName": "A. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govorkova", 
        "givenName": "T. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia", 
            "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okulov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.118061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017995386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783416110226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308578", 
          "https://doi.org/10.1134/s1063783416110226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783416110226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021308578", 
          "https://doi.org/10.1134/s1063783416110226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(02)02274-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030985182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(02)02274-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030985182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-82499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033001114", 
          "https://doi.org/10.1007/978-3-642-82499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.017201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033506073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.017201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033506073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039972751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.86.187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039972751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(97)00350-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044936587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1994v037n07abeh000033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058172422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.085311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.085311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060636596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782617090159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091425258", 
          "https://doi.org/10.1134/s1063782617090159"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Characteristic effects of magnetic ordering and conduction in semiconductor heterostructures with a GaAs : Be/Ga0.84In0.16As/GaAs quantum well and manganese \u03b4-layers of different thickness (from 0.4 to 2 monolayers) were studied based on analysis of magnetic field and temperature dependences, galvanomagnetic effects, and magnetization. An anomalous dependence of the conductivity on the manganese atoms concentration in the \u03b4-layer was observed, which was due to a strong scattering of charge carriers in the structures with the low content of magnetic impurities. Magnetic properties of the heterostructures clearly indicated the magnetic ordering of the impurity system (saturation and hysteresis of the magnetization and fulfillment of the Curie\u2013Weiss law at increasing temperature). Parameters of the magnetic subsystem allowed revealing different types of ordering in the systems with different concentrations of the magnetic impurity. Changing the concentration of the Mn admixture in the \u03b4-layer was shown to influence significantly the conductivity and magnetism in the studied structures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783418120211", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7596047", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Effects of Magnetic Ordering in Conductivity and Magnetization of GaAs-Based Semiconductor Heterostructures upon Changing the Concentration of the Delta-Layer of Manganese Admixture", 
    "pagination": "2402-2407", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "291570628da25362e72ef0ae925db48853efd666d8542f15e188a19368225275"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783418120211"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783418120211", 
      "https://app.dimensions.ai/details/publication/pub.1111953543"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105418_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063783418120211"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120211'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120211'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120211'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120211'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783418120211 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N49a4d7480cdd4c4b9d3736c17d040bd1
4 schema:citation sg:pub.10.1007/978-3-642-82499-9
5 sg:pub.10.1134/s1063782617090159
6 sg:pub.10.1134/s1063783416110226
7 https://doi.org/10.1016/s0022-0248(02)02274-1
8 https://doi.org/10.1016/s0304-8853(97)00350-8
9 https://doi.org/10.1063/1.118061
10 https://doi.org/10.1070/pu1994v037n07abeh000033
11 https://doi.org/10.1103/physrevb.84.085311
12 https://doi.org/10.1103/physrevlett.95.017201
13 https://doi.org/10.1103/revmodphys.86.187
14 schema:datePublished 2018-12
15 schema:datePublishedReg 2018-12-01
16 schema:description Characteristic effects of magnetic ordering and conduction in semiconductor heterostructures with a GaAs : Be/Ga0.84In0.16As/GaAs quantum well and manganese δ-layers of different thickness (from 0.4 to 2 monolayers) were studied based on analysis of magnetic field and temperature dependences, galvanomagnetic effects, and magnetization. An anomalous dependence of the conductivity on the manganese atoms concentration in the δ-layer was observed, which was due to a strong scattering of charge carriers in the structures with the low content of magnetic impurities. Magnetic properties of the heterostructures clearly indicated the magnetic ordering of the impurity system (saturation and hysteresis of the magnetization and fulfillment of the Curie–Weiss law at increasing temperature). Parameters of the magnetic subsystem allowed revealing different types of ordering in the systems with different concentrations of the magnetic impurity. Changing the concentration of the Mn admixture in the δ-layer was shown to influence significantly the conductivity and magnetism in the studied structures.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N036d9000e77d45d191feecf21fb2dc57
21 N072a2713a3d64aa9be92934f83d78019
22 sg:journal.1136591
23 schema:name Effects of Magnetic Ordering in Conductivity and Magnetization of GaAs-Based Semiconductor Heterostructures upon Changing the Concentration of the Delta-Layer of Manganese Admixture
24 schema:pagination 2402-2407
25 schema:productId N18ef6e247dc148f0b4f3c322d374aa7d
26 N2d94b67fe5e54f199c5a49319901b879
27 Ndce2d66bdf1d44a597eb626c733ec06e
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953543
29 https://doi.org/10.1134/s1063783418120211
30 schema:sdDatePublished 2019-04-11T09:02
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N7077847d266b445bae8906faa7dcaf52
33 schema:url https://link.springer.com/10.1134%2FS1063783418120211
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N036d9000e77d45d191feecf21fb2dc57 schema:issueNumber 12
38 rdf:type schema:PublicationIssue
39 N072a2713a3d64aa9be92934f83d78019 schema:volumeNumber 60
40 rdf:type schema:PublicationVolume
41 N0bb094ba971143f6a357614f4d8f4a96 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
42 schema:familyName Charikova
43 schema:givenName T. B.
44 rdf:type schema:Person
45 N11a58746552a4fa7906548b0be1fed59 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
46 schema:familyName Okulov
47 schema:givenName V. I.
48 rdf:type schema:Person
49 N18ef6e247dc148f0b4f3c322d374aa7d schema:name doi
50 schema:value 10.1134/s1063783418120211
51 rdf:type schema:PropertyValue
52 N2d94b67fe5e54f199c5a49319901b879 schema:name dimensions_id
53 schema:value pub.1111953543
54 rdf:type schema:PropertyValue
55 N49a4d7480cdd4c4b9d3736c17d040bd1 rdf:first Ndf7b9988bb1d4597b5a8d771693e87ea
56 rdf:rest N728a20c02efe4c41906cc65ac757efe3
57 N62a4618ce1c04ffcac6aec87d6666254 rdf:first N6441bf71f6cd43ccaef1d5a0f42d04ed
58 rdf:rest Naf2e5b5c53944784a12dd273d98f476d
59 N6441bf71f6cd43ccaef1d5a0f42d04ed schema:affiliation https://www.grid.ac/institutes/grid.4886.2
60 schema:familyName Lugovykh
61 schema:givenName A. M.
62 rdf:type schema:Person
63 N7077847d266b445bae8906faa7dcaf52 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N728a20c02efe4c41906cc65ac757efe3 rdf:first Nbbed0e8ed89446a6a64366b87eb41c98
66 rdf:rest Nf06828ab99f0481a8259e4373c3c8be2
67 N945324242161400c95758e5538d695f7 rdf:first N11a58746552a4fa7906548b0be1fed59
68 rdf:rest rdf:nil
69 Naf2e5b5c53944784a12dd273d98f476d rdf:first Nde5dfb2913094e1aa11fec91ba4a172b
70 rdf:rest N945324242161400c95758e5538d695f7
71 Nbbed0e8ed89446a6a64366b87eb41c98 schema:affiliation https://www.grid.ac/institutes/grid.418275.d
72 schema:familyName Kudryavtsev
73 schema:givenName Yu. A.
74 rdf:type schema:Person
75 Ndce2d66bdf1d44a597eb626c733ec06e schema:name readcube_id
76 schema:value 291570628da25362e72ef0ae925db48853efd666d8542f15e188a19368225275
77 rdf:type schema:PropertyValue
78 Nde5dfb2913094e1aa11fec91ba4a172b schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Govorkova
80 schema:givenName T. E.
81 rdf:type schema:Person
82 Ndf7b9988bb1d4597b5a8d771693e87ea schema:affiliation https://www.grid.ac/institutes/grid.423485.c
83 schema:familyName Moiseev
84 schema:givenName K. D.
85 rdf:type schema:Person
86 Nf06828ab99f0481a8259e4373c3c8be2 rdf:first N0bb094ba971143f6a357614f4d8f4a96
87 rdf:rest N62a4618ce1c04ffcac6aec87d6666254
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
92 schema:name Materials Engineering
93 rdf:type schema:DefinedTerm
94 sg:grant.7596047 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063783418120211
95 rdf:type schema:MonetaryGrant
96 sg:journal.1136591 schema:issn 0367-3294
97 1063-7834
98 schema:name Physics of the Solid State
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-3-642-82499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033001114
101 https://doi.org/10.1007/978-3-642-82499-9
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/s1063782617090159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091425258
104 https://doi.org/10.1134/s1063782617090159
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s1063783416110226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021308578
107 https://doi.org/10.1134/s1063783416110226
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0022-0248(02)02274-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030985182
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0304-8853(97)00350-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044936587
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.118061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017995386
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1070/pu1994v037n07abeh000033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058172422
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.84.085311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060636596
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.95.017201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033506073
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/revmodphys.86.187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039972751
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
124 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
125 Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002, Yekaterinburg, Russia
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.418275.d schema:alternateName Instituto Politécnico Nacional
128 schema:name National Polytechnic Institute SINVESTAV, 07360, Mexico City, Mexico
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
131 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
134 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...