Metal–Insulator Phase Transition in Iron-Doped Vanadium Dioxide Thin Films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. N. Andreev, V. A. Klimov

ABSTRACT

The electrical conductivity of polycrystalline V(1 – x)FexO2 films has been investigated in a wide temperature range, which covers both the metal and insulator phase regions. It is shown that with an increase in the iron concentration the metal–insulator phase transition shifts toward lower temperatures, while the temperature range of the transition in doped samples additionally broadens as compared with pure VO2. To explain the temperature dependence of the electrical conductivity of the V(1 – x)FexO2 insulator phase, a hopping conductivity model has been used, which takes into account the effect of thermal vibrations of atoms on the resonance integral. The values of parameter ε have been calculated as a function of the degree of VO2 doping. More... »

PAGES

2604-2607

Journal

TITLE

Physics of the Solid State

ISSUE

12

VOLUME

60

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783418120028

DOI

http://dx.doi.org/10.1134/s1063783418120028

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111953524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreev", 
        "givenName": "V. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimov", 
        "givenName": "V. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0025-5408(76)90071-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004620748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(76)90071-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004620748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009812742", 
          "https://doi.org/10.1038/nature12425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-3697(72)80494-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014335518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783407120062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020992562", 
          "https://doi.org/10.1134/s1063783407120062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783414090030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023541914", 
          "https://doi.org/10.1134/s1063783414090030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00602-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031368114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00602-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031368114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/crat.19770121202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034414136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783416030021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048067307", 
          "https://doi.org/10.1134/s1063783416030021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2220770243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052963850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061831r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl061831r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056216859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1020443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1020443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303065h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.4383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.4383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.2541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.2541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625227"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The electrical conductivity of polycrystalline V(1 \u2013 x)FexO2 films has been investigated in a wide temperature range, which covers both the metal and insulator phase regions. It is shown that with an increase in the iron concentration the metal\u2013insulator phase transition shifts toward lower temperatures, while the temperature range of the transition in doped samples additionally broadens as compared with pure VO2. To explain the temperature dependence of the electrical conductivity of the V(1 \u2013 x)FexO2 insulator phase, a hopping conductivity model has been used, which takes into account the effect of thermal vibrations of atoms on the resonance integral. The values of parameter \u03b5 have been calculated as a function of the degree of VO2 doping.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783418120028", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Metal\u2013Insulator Phase Transition in Iron-Doped Vanadium Dioxide Thin Films", 
    "pagination": "2604-2607", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58d774ad2674deb718049087ece54b54373cec0810bcb3a0c399de6852f66cbf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783418120028"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111953524"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783418120028", 
      "https://app.dimensions.ai/details/publication/pub.1111953524"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000331_0000000331/records_105409_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063783418120028"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120028'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120028'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120028'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783418120028'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783418120028 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author N3b0321580a6e4dd5b243e2245ea29427
4 schema:citation sg:pub.10.1038/nature12425
5 sg:pub.10.1134/s1063783407120062
6 sg:pub.10.1134/s1063783414090030
7 sg:pub.10.1134/s1063783416030021
8 https://doi.org/10.1002/crat.19770121202
9 https://doi.org/10.1002/pssb.2220770243
10 https://doi.org/10.1016/0025-5408(76)90071-4
11 https://doi.org/10.1016/s0022-3697(72)80494-3
12 https://doi.org/10.1016/s0040-6090(03)00602-3
13 https://doi.org/10.1021/nl061831r
14 https://doi.org/10.1021/nl1020443
15 https://doi.org/10.1021/nl303065h
16 https://doi.org/10.1103/physrevb.11.4383
17 https://doi.org/10.1103/physrevb.5.2541
18 https://doi.org/10.1103/physrevb.77.235111
19 schema:datePublished 2018-12
20 schema:datePublishedReg 2018-12-01
21 schema:description The electrical conductivity of polycrystalline V(1 – x)FexO2 films has been investigated in a wide temperature range, which covers both the metal and insulator phase regions. It is shown that with an increase in the iron concentration the metal–insulator phase transition shifts toward lower temperatures, while the temperature range of the transition in doped samples additionally broadens as compared with pure VO2. To explain the temperature dependence of the electrical conductivity of the V(1 – x)FexO2 insulator phase, a hopping conductivity model has been used, which takes into account the effect of thermal vibrations of atoms on the resonance integral. The values of parameter ε have been calculated as a function of the degree of VO2 doping.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N1fb7ca4c68584d1bad869dab86422687
26 Na09a14beff8442139fdd591f199866ea
27 sg:journal.1136591
28 schema:name Metal–Insulator Phase Transition in Iron-Doped Vanadium Dioxide Thin Films
29 schema:pagination 2604-2607
30 schema:productId N6b079b72ee4845b79b826e79bdd8aa3b
31 Nab30c8e9e61347b6b79e9faf77391fe1
32 Nc7c2656e13394dcb854255840152799e
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111953524
34 https://doi.org/10.1134/s1063783418120028
35 schema:sdDatePublished 2019-04-11T09:02
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nc9ee84c77a7044d38773da898baade50
38 schema:url https://link.springer.com/10.1134%2FS1063783418120028
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N017b4cabd3d24c44b877f5e6b9eb63d3 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
43 schema:familyName Klimov
44 schema:givenName V. A.
45 rdf:type schema:Person
46 N063cda0ddc9f4202a2520028119ee5ae rdf:first N017b4cabd3d24c44b877f5e6b9eb63d3
47 rdf:rest rdf:nil
48 N145017fce2b94037b56c7fa90d47b129 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
49 schema:familyName Andreev
50 schema:givenName V. N.
51 rdf:type schema:Person
52 N1fb7ca4c68584d1bad869dab86422687 schema:volumeNumber 60
53 rdf:type schema:PublicationVolume
54 N3b0321580a6e4dd5b243e2245ea29427 rdf:first N145017fce2b94037b56c7fa90d47b129
55 rdf:rest N063cda0ddc9f4202a2520028119ee5ae
56 N6b079b72ee4845b79b826e79bdd8aa3b schema:name readcube_id
57 schema:value 58d774ad2674deb718049087ece54b54373cec0810bcb3a0c399de6852f66cbf
58 rdf:type schema:PropertyValue
59 Na09a14beff8442139fdd591f199866ea schema:issueNumber 12
60 rdf:type schema:PublicationIssue
61 Nab30c8e9e61347b6b79e9faf77391fe1 schema:name doi
62 schema:value 10.1134/s1063783418120028
63 rdf:type schema:PropertyValue
64 Nc7c2656e13394dcb854255840152799e schema:name dimensions_id
65 schema:value pub.1111953524
66 rdf:type schema:PropertyValue
67 Nc9ee84c77a7044d38773da898baade50 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
70 schema:name Chemical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
73 schema:name Other Chemical Sciences
74 rdf:type schema:DefinedTerm
75 sg:journal.1136591 schema:issn 0367-3294
76 1063-7834
77 schema:name Physics of the Solid State
78 rdf:type schema:Periodical
79 sg:pub.10.1038/nature12425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009812742
80 https://doi.org/10.1038/nature12425
81 rdf:type schema:CreativeWork
82 sg:pub.10.1134/s1063783407120062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020992562
83 https://doi.org/10.1134/s1063783407120062
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s1063783414090030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023541914
86 https://doi.org/10.1134/s1063783414090030
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s1063783416030021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048067307
89 https://doi.org/10.1134/s1063783416030021
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/crat.19770121202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034414136
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/pssb.2220770243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052963850
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0025-5408(76)90071-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004620748
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0022-3697(72)80494-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335518
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0040-6090(03)00602-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031368114
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/nl061831r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216859
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/nl1020443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218086
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/nl303065h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219655
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.11.4383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060519711
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.5.2541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571918
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.77.235111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625227
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
114 schema:name Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...