Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-20

AUTHORS

N. V. Ershov, V. I. Fedorov, Yu. P. Chernenkov, V. A. Lukshina, D. A. Shishkin

ABSTRACT

The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type. More... »

PAGES

1748-1761

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783417090074

DOI

http://dx.doi.org/10.1134/s1063783417090074

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091841803


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ershov", 
        "givenName": "N. V.", 
        "id": "sg:person.014304145061.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.430219.d", 
          "name": [
            "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorov", 
        "givenName": "V. I.", 
        "id": "sg:person.07771415261.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771415261.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.430219.d", 
          "name": [
            "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernenkov", 
        "givenName": "Yu. P.", 
        "id": "sg:person.016474466461.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474466461.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia", 
            "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukshina", 
        "givenName": "V. A.", 
        "id": "sg:person.015101525461.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia", 
            "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shishkin", 
        "givenName": "D. A.", 
        "id": "sg:person.013143621400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063783415010096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012033715", 
          "https://doi.org/10.1134/s1063783415010096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783413030098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487082", 
          "https://doi.org/10.1134/s1063783413030098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783410030169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023684558", 
          "https://doi.org/10.1134/s1063783410030169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783412090119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016141462", 
          "https://doi.org/10.1134/s1063783412090119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783414110079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045989841", 
          "https://doi.org/10.1134/s1063783414110079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x06090055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038175521", 
          "https://doi.org/10.1134/s0031918x06090055"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-20", 
    "datePublishedReg": "2017-09-20", 
    "description": "The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783417090074", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "keywords": [
      "magnetic anisotropy", 
      "magnetic properties", 
      "transverse magnetic anisotropy", 
      "axis type", 
      "chromium content increases", 
      "magnetic anisotropy decreases", 
      "thermomechanical treatment", 
      "effect of crystallization", 
      "deformation anisotropy", 
      "magnetic hysteresis loops", 
      "Fe3Si phase", 
      "tensile stress", 
      "transverse direction", 
      "alloy", 
      "magnetoelastic interaction", 
      "anisotropic deformation", 
      "hysteresis loops", 
      "ray diffraction patterns", 
      "external stress", 
      "content increases", 
      "magnetization reversal", 
      "deformation", 
      "cause of formation", 
      "interplanar spacing", 
      "anisotropy decreases", 
      "bcc lattice", 
      "crystallographic directions", 
      "nanocrystal lattice", 
      "anisotropy", 
      "lattice", 
      "diffraction patterns", 
      "chromium", 
      "annealing", 
      "properties", 
      "loading", 
      "cooling", 
      "direction", 
      "extension direction", 
      "stress", 
      "nanocrystals", 
      "high content", 
      "structure", 
      "spacing", 
      "energy", 
      "crystallization", 
      "loop", 
      "phase", 
      "iron", 
      "influence", 
      "decrease", 
      "types", 
      "content", 
      "formation", 
      "state", 
      "increase", 
      "effect", 
      "interaction", 
      "TSA", 
      "reversal", 
      "changes", 
      "treatment", 
      "patterns", 
      "cause", 
      "induction"
    ], 
    "name": "Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium", 
    "pagination": "1748-1761", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091841803"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783417090074"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783417090074", 
      "https://app.dimensions.ai/details/publication/pub.1091841803"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783417090074"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      22 PREDICATES      97 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783417090074 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nc81b1d95764a4cd5a4244a3cb2addb58
6 schema:citation sg:pub.10.1134/s0031918x06090055
7 sg:pub.10.1134/s1063783410030169
8 sg:pub.10.1134/s1063783412090119
9 sg:pub.10.1134/s1063783413030098
10 sg:pub.10.1134/s1063783414110079
11 sg:pub.10.1134/s1063783415010096
12 schema:datePublished 2017-09-20
13 schema:datePublishedReg 2017-09-20
14 schema:description The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3277ddff08724eef92b3a0ce33b13fc1
19 Nb170a51765e2492b980b09d4a47c4220
20 sg:journal.1136591
21 schema:keywords Fe3Si phase
22 TSA
23 alloy
24 anisotropic deformation
25 anisotropy
26 anisotropy decreases
27 annealing
28 axis type
29 bcc lattice
30 cause
31 cause of formation
32 changes
33 chromium
34 chromium content increases
35 content
36 content increases
37 cooling
38 crystallization
39 crystallographic directions
40 decrease
41 deformation
42 deformation anisotropy
43 diffraction patterns
44 direction
45 effect
46 effect of crystallization
47 energy
48 extension direction
49 external stress
50 formation
51 high content
52 hysteresis loops
53 increase
54 induction
55 influence
56 interaction
57 interplanar spacing
58 iron
59 lattice
60 loading
61 loop
62 magnetic anisotropy
63 magnetic anisotropy decreases
64 magnetic hysteresis loops
65 magnetic properties
66 magnetization reversal
67 magnetoelastic interaction
68 nanocrystal lattice
69 nanocrystals
70 patterns
71 phase
72 properties
73 ray diffraction patterns
74 reversal
75 spacing
76 state
77 stress
78 structure
79 tensile stress
80 thermomechanical treatment
81 transverse direction
82 transverse magnetic anisotropy
83 treatment
84 types
85 schema:name Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium
86 schema:pagination 1748-1761
87 schema:productId N568bd6a9940a4a409d7b7ef2289dd0a6
88 N87d5f1ca2f9b4e2fb7672664a441a9b4
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091841803
90 https://doi.org/10.1134/s1063783417090074
91 schema:sdDatePublished 2022-05-10T10:19
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N60db6d0739034d939d306497d2c029af
94 schema:url https://doi.org/10.1134/s1063783417090074
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N3277ddff08724eef92b3a0ce33b13fc1 schema:issueNumber 9
99 rdf:type schema:PublicationIssue
100 N4d30520ee8c2474f82ce21c6304afa48 rdf:first sg:person.015101525461.43
101 rdf:rest N709152f0ba874045b0e9b9cd8b47f556
102 N568bd6a9940a4a409d7b7ef2289dd0a6 schema:name doi
103 schema:value 10.1134/s1063783417090074
104 rdf:type schema:PropertyValue
105 N580c5cc82eaa4977a125d51ab57764cf rdf:first sg:person.016474466461.51
106 rdf:rest N4d30520ee8c2474f82ce21c6304afa48
107 N5d23652cdf8f490e933f3bcde34c4dd6 rdf:first sg:person.07771415261.04
108 rdf:rest N580c5cc82eaa4977a125d51ab57764cf
109 N60db6d0739034d939d306497d2c029af schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N709152f0ba874045b0e9b9cd8b47f556 rdf:first sg:person.013143621400.41
112 rdf:rest rdf:nil
113 N87d5f1ca2f9b4e2fb7672664a441a9b4 schema:name dimensions_id
114 schema:value pub.1091841803
115 rdf:type schema:PropertyValue
116 Nb170a51765e2492b980b09d4a47c4220 schema:volumeNumber 59
117 rdf:type schema:PublicationVolume
118 Nc81b1d95764a4cd5a4244a3cb2addb58 rdf:first sg:person.014304145061.43
119 rdf:rest N5d23652cdf8f490e933f3bcde34c4dd6
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
124 schema:name Classical Physics
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
127 schema:name Condensed Matter Physics
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
130 schema:name Quantum Physics
131 rdf:type schema:DefinedTerm
132 sg:journal.1136591 schema:issn 0367-3294
133 1063-7834
134 schema:name Physics of the Solid State
135 schema:publisher Pleiades Publishing
136 rdf:type schema:Periodical
137 sg:person.013143621400.41 schema:affiliation grid-institutes:grid.412761.7
138 schema:familyName Shishkin
139 schema:givenName D. A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41
141 rdf:type schema:Person
142 sg:person.014304145061.43 schema:affiliation grid-institutes:grid.426536.0
143 schema:familyName Ershov
144 schema:givenName N. V.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43
146 rdf:type schema:Person
147 sg:person.015101525461.43 schema:affiliation grid-institutes:grid.412761.7
148 schema:familyName Lukshina
149 schema:givenName V. A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43
151 rdf:type schema:Person
152 sg:person.016474466461.51 schema:affiliation grid-institutes:grid.430219.d
153 schema:familyName Chernenkov
154 schema:givenName Yu. P.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474466461.51
156 rdf:type schema:Person
157 sg:person.07771415261.04 schema:affiliation grid-institutes:grid.430219.d
158 schema:familyName Fedorov
159 schema:givenName V. I.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771415261.04
161 rdf:type schema:Person
162 sg:pub.10.1134/s0031918x06090055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038175521
163 https://doi.org/10.1134/s0031918x06090055
164 rdf:type schema:CreativeWork
165 sg:pub.10.1134/s1063783410030169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023684558
166 https://doi.org/10.1134/s1063783410030169
167 rdf:type schema:CreativeWork
168 sg:pub.10.1134/s1063783412090119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016141462
169 https://doi.org/10.1134/s1063783412090119
170 rdf:type schema:CreativeWork
171 sg:pub.10.1134/s1063783413030098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018487082
172 https://doi.org/10.1134/s1063783413030098
173 rdf:type schema:CreativeWork
174 sg:pub.10.1134/s1063783414110079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045989841
175 https://doi.org/10.1134/s1063783414110079
176 rdf:type schema:CreativeWork
177 sg:pub.10.1134/s1063783415010096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012033715
178 https://doi.org/10.1134/s1063783415010096
179 rdf:type schema:CreativeWork
180 grid-institutes:grid.412761.7 schema:alternateName Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia
181 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia
182 Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia
183 rdf:type schema:Organization
184 grid-institutes:grid.426536.0 schema:alternateName Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia
185 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia
186 rdf:type schema:Organization
187 grid-institutes:grid.430219.d schema:alternateName Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia
188 schema:name Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...