Ontology type: schema:ScholarlyArticle
2017-09-20
AUTHORSN. V. Ershov, V. I. Fedorov, Yu. P. Chernenkov, V. A. Lukshina, D. A. Shishkin
ABSTRACTThe changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type. More... »
PAGES1748-1761
http://scigraph.springernature.com/pub.10.1134/s1063783417090074
DOIhttp://dx.doi.org/10.1134/s1063783417090074
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091841803
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Classical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.426536.0",
"name": [
"Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Ershov",
"givenName": "N. V.",
"id": "sg:person.014304145061.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.430219.d",
"name": [
"Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia"
],
"type": "Organization"
},
"familyName": "Fedorov",
"givenName": "V. I.",
"id": "sg:person.07771415261.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771415261.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.430219.d",
"name": [
"Konstantinov Petersburg Nuclear Physics Institute of National Research Centre \u201cKurchatov Institute\u201d, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia"
],
"type": "Organization"
},
"familyName": "Chernenkov",
"givenName": "Yu. P.",
"id": "sg:person.016474466461.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474466461.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.412761.7",
"name": [
"Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia",
"Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Lukshina",
"givenName": "V. A.",
"id": "sg:person.015101525461.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.412761.7",
"name": [
"Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia",
"Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Shishkin",
"givenName": "D. A.",
"id": "sg:person.013143621400.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063783415010096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012033715",
"https://doi.org/10.1134/s1063783415010096"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063783413030098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018487082",
"https://doi.org/10.1134/s1063783413030098"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063783410030169",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023684558",
"https://doi.org/10.1134/s1063783410030169"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063783412090119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016141462",
"https://doi.org/10.1134/s1063783412090119"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063783414110079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045989841",
"https://doi.org/10.1134/s1063783414110079"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0031918x06090055",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038175521",
"https://doi.org/10.1134/s0031918x06090055"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-09-20",
"datePublishedReg": "2017-09-20",
"description": "The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.",
"genre": "article",
"id": "sg:pub.10.1134/s1063783417090074",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136591",
"issn": [
"0367-3294",
"1063-7834"
],
"name": "Physics of the Solid State",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "59"
}
],
"keywords": [
"magnetic anisotropy",
"magnetic properties",
"transverse magnetic anisotropy",
"axis type",
"chromium content increases",
"magnetic anisotropy decreases",
"thermomechanical treatment",
"effect of crystallization",
"deformation anisotropy",
"magnetic hysteresis loops",
"Fe3Si phase",
"tensile stress",
"transverse direction",
"alloy",
"magnetoelastic interaction",
"anisotropic deformation",
"hysteresis loops",
"ray diffraction patterns",
"external stress",
"content increases",
"magnetization reversal",
"deformation",
"cause of formation",
"interplanar spacing",
"anisotropy decreases",
"bcc lattice",
"crystallographic directions",
"nanocrystal lattice",
"anisotropy",
"lattice",
"diffraction patterns",
"chromium",
"annealing",
"properties",
"loading",
"cooling",
"direction",
"extension direction",
"stress",
"nanocrystals",
"high content",
"structure",
"spacing",
"energy",
"crystallization",
"loop",
"phase",
"iron",
"influence",
"decrease",
"types",
"content",
"formation",
"state",
"increase",
"effect",
"interaction",
"TSA",
"reversal",
"changes",
"treatment",
"patterns",
"cause",
"induction"
],
"name": "Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium",
"pagination": "1748-1761",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091841803"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063783417090074"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063783417090074",
"https://app.dimensions.ai/details/publication/pub.1091841803"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_744.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063783417090074"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783417090074'
This table displays all metadata directly associated to this object as RDF triples.
189 TRIPLES
22 PREDICATES
97 URIs
81 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063783417090074 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0203 |
3 | ″ | ″ | anzsrc-for:0204 |
4 | ″ | ″ | anzsrc-for:0206 |
5 | ″ | schema:author | Nc81b1d95764a4cd5a4244a3cb2addb58 |
6 | ″ | schema:citation | sg:pub.10.1134/s0031918x06090055 |
7 | ″ | ″ | sg:pub.10.1134/s1063783410030169 |
8 | ″ | ″ | sg:pub.10.1134/s1063783412090119 |
9 | ″ | ″ | sg:pub.10.1134/s1063783413030098 |
10 | ″ | ″ | sg:pub.10.1134/s1063783414110079 |
11 | ″ | ″ | sg:pub.10.1134/s1063783415010096 |
12 | ″ | schema:datePublished | 2017-09-20 |
13 | ″ | schema:datePublishedReg | 2017-09-20 |
14 | ″ | schema:description | The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | false |
18 | ″ | schema:isPartOf | N3277ddff08724eef92b3a0ce33b13fc1 |
19 | ″ | ″ | Nb170a51765e2492b980b09d4a47c4220 |
20 | ″ | ″ | sg:journal.1136591 |
21 | ″ | schema:keywords | Fe3Si phase |
22 | ″ | ″ | TSA |
23 | ″ | ″ | alloy |
24 | ″ | ″ | anisotropic deformation |
25 | ″ | ″ | anisotropy |
26 | ″ | ″ | anisotropy decreases |
27 | ″ | ″ | annealing |
28 | ″ | ″ | axis type |
29 | ″ | ″ | bcc lattice |
30 | ″ | ″ | cause |
31 | ″ | ″ | cause of formation |
32 | ″ | ″ | changes |
33 | ″ | ″ | chromium |
34 | ″ | ″ | chromium content increases |
35 | ″ | ″ | content |
36 | ″ | ″ | content increases |
37 | ″ | ″ | cooling |
38 | ″ | ″ | crystallization |
39 | ″ | ″ | crystallographic directions |
40 | ″ | ″ | decrease |
41 | ″ | ″ | deformation |
42 | ″ | ″ | deformation anisotropy |
43 | ″ | ″ | diffraction patterns |
44 | ″ | ″ | direction |
45 | ″ | ″ | effect |
46 | ″ | ″ | effect of crystallization |
47 | ″ | ″ | energy |
48 | ″ | ″ | extension direction |
49 | ″ | ″ | external stress |
50 | ″ | ″ | formation |
51 | ″ | ″ | high content |
52 | ″ | ″ | hysteresis loops |
53 | ″ | ″ | increase |
54 | ″ | ″ | induction |
55 | ″ | ″ | influence |
56 | ″ | ″ | interaction |
57 | ″ | ″ | interplanar spacing |
58 | ″ | ″ | iron |
59 | ″ | ″ | lattice |
60 | ″ | ″ | loading |
61 | ″ | ″ | loop |
62 | ″ | ″ | magnetic anisotropy |
63 | ″ | ″ | magnetic anisotropy decreases |
64 | ″ | ″ | magnetic hysteresis loops |
65 | ″ | ″ | magnetic properties |
66 | ″ | ″ | magnetization reversal |
67 | ″ | ″ | magnetoelastic interaction |
68 | ″ | ″ | nanocrystal lattice |
69 | ″ | ″ | nanocrystals |
70 | ″ | ″ | patterns |
71 | ″ | ″ | phase |
72 | ″ | ″ | properties |
73 | ″ | ″ | ray diffraction patterns |
74 | ″ | ″ | reversal |
75 | ″ | ″ | spacing |
76 | ″ | ″ | state |
77 | ″ | ″ | stress |
78 | ″ | ″ | structure |
79 | ″ | ″ | tensile stress |
80 | ″ | ″ | thermomechanical treatment |
81 | ″ | ″ | transverse direction |
82 | ″ | ″ | transverse magnetic anisotropy |
83 | ″ | ″ | treatment |
84 | ″ | ″ | types |
85 | ″ | schema:name | Effect of crystallization annealing under loading on the magnetic properties and the structure of a soft magnetic FeSiNbCuB alloy doped with chromium |
86 | ″ | schema:pagination | 1748-1761 |
87 | ″ | schema:productId | N568bd6a9940a4a409d7b7ef2289dd0a6 |
88 | ″ | ″ | N87d5f1ca2f9b4e2fb7672664a441a9b4 |
89 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1091841803 |
90 | ″ | ″ | https://doi.org/10.1134/s1063783417090074 |
91 | ″ | schema:sdDatePublished | 2022-05-10T10:19 |
92 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
93 | ″ | schema:sdPublisher | N60db6d0739034d939d306497d2c029af |
94 | ″ | schema:url | https://doi.org/10.1134/s1063783417090074 |
95 | ″ | sgo:license | sg:explorer/license/ |
96 | ″ | sgo:sdDataset | articles |
97 | ″ | rdf:type | schema:ScholarlyArticle |
98 | N3277ddff08724eef92b3a0ce33b13fc1 | schema:issueNumber | 9 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | N4d30520ee8c2474f82ce21c6304afa48 | rdf:first | sg:person.015101525461.43 |
101 | ″ | rdf:rest | N709152f0ba874045b0e9b9cd8b47f556 |
102 | N568bd6a9940a4a409d7b7ef2289dd0a6 | schema:name | doi |
103 | ″ | schema:value | 10.1134/s1063783417090074 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N580c5cc82eaa4977a125d51ab57764cf | rdf:first | sg:person.016474466461.51 |
106 | ″ | rdf:rest | N4d30520ee8c2474f82ce21c6304afa48 |
107 | N5d23652cdf8f490e933f3bcde34c4dd6 | rdf:first | sg:person.07771415261.04 |
108 | ″ | rdf:rest | N580c5cc82eaa4977a125d51ab57764cf |
109 | N60db6d0739034d939d306497d2c029af | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | N709152f0ba874045b0e9b9cd8b47f556 | rdf:first | sg:person.013143621400.41 |
112 | ″ | rdf:rest | rdf:nil |
113 | N87d5f1ca2f9b4e2fb7672664a441a9b4 | schema:name | dimensions_id |
114 | ″ | schema:value | pub.1091841803 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | Nb170a51765e2492b980b09d4a47c4220 | schema:volumeNumber | 59 |
117 | ″ | rdf:type | schema:PublicationVolume |
118 | Nc81b1d95764a4cd5a4244a3cb2addb58 | rdf:first | sg:person.014304145061.43 |
119 | ″ | rdf:rest | N5d23652cdf8f490e933f3bcde34c4dd6 |
120 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Physical Sciences |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0203 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Classical Physics |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
127 | ″ | schema:name | Condensed Matter Physics |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
130 | ″ | schema:name | Quantum Physics |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | sg:journal.1136591 | schema:issn | 0367-3294 |
133 | ″ | ″ | 1063-7834 |
134 | ″ | schema:name | Physics of the Solid State |
135 | ″ | schema:publisher | Pleiades Publishing |
136 | ″ | rdf:type | schema:Periodical |
137 | sg:person.013143621400.41 | schema:affiliation | grid-institutes:grid.412761.7 |
138 | ″ | schema:familyName | Shishkin |
139 | ″ | schema:givenName | D. A. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.014304145061.43 | schema:affiliation | grid-institutes:grid.426536.0 |
143 | ″ | schema:familyName | Ershov |
144 | ″ | schema:givenName | N. V. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014304145061.43 |
146 | ″ | rdf:type | schema:Person |
147 | sg:person.015101525461.43 | schema:affiliation | grid-institutes:grid.412761.7 |
148 | ″ | schema:familyName | Lukshina |
149 | ″ | schema:givenName | V. A. |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43 |
151 | ″ | rdf:type | schema:Person |
152 | sg:person.016474466461.51 | schema:affiliation | grid-institutes:grid.430219.d |
153 | ″ | schema:familyName | Chernenkov |
154 | ″ | schema:givenName | Yu. P. |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474466461.51 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.07771415261.04 | schema:affiliation | grid-institutes:grid.430219.d |
158 | ″ | schema:familyName | Fedorov |
159 | ″ | schema:givenName | V. I. |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07771415261.04 |
161 | ″ | rdf:type | schema:Person |
162 | sg:pub.10.1134/s0031918x06090055 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038175521 |
163 | ″ | ″ | https://doi.org/10.1134/s0031918x06090055 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1134/s1063783410030169 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023684558 |
166 | ″ | ″ | https://doi.org/10.1134/s1063783410030169 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1134/s1063783412090119 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016141462 |
169 | ″ | ″ | https://doi.org/10.1134/s1063783412090119 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.1134/s1063783413030098 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018487082 |
172 | ″ | ″ | https://doi.org/10.1134/s1063783413030098 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1134/s1063783414110079 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045989841 |
175 | ″ | ″ | https://doi.org/10.1134/s1063783414110079 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | sg:pub.10.1134/s1063783415010096 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012033715 |
178 | ″ | ″ | https://doi.org/10.1134/s1063783415010096 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | grid-institutes:grid.412761.7 | schema:alternateName | Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia |
181 | ″ | schema:name | Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia |
182 | ″ | ″ | Ural Federal University, ul. Mira 19, 620002, Yekaterinburg, Russia |
183 | ″ | rdf:type | schema:Organization |
184 | grid-institutes:grid.426536.0 | schema:alternateName | Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia |
185 | ″ | schema:name | Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620990, Yekaterinburg, Russia |
186 | ″ | rdf:type | schema:Organization |
187 | grid-institutes:grid.430219.d | schema:alternateName | Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia |
188 | ″ | schema:name | Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, Orlova Roshcha, 188300, Gatchina, Leningrad oblast, Russia |
189 | ″ | rdf:type | schema:Organization |