AlGaN nanostructures with extremely high quantum yield at 300 K View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-11-15

AUTHORS

A. A. Toropov, E. A. Shevchenko, T. V. Shubina, V. N. Jmerik, D. V. Nechaev, G. Pozina, S. V. Ivanov

ABSTRACT

Theoretical optimization of a quantum well heterostructure based on AlGaN solid solutions is implemented in order to attain the maximum charge carrier activation energy and the maximum exciton binding energy at a radiation wavelength of ~300 nm. An optimized structure sample with the radiative recombination dominating over the temperature range of 5 to 300 K and the room temperature internal quantum yield as high as 80% of the value measured at 5 K has been manufactured via plasma-assisted molecular beam epitaxy. More... »

PAGES

2261-2266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783416110366

DOI

http://dx.doi.org/10.1134/s1063783416110366

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023291576


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.014125142357.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shevchenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011332217145.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shubina", 
        "givenName": "T. V.", 
        "id": "sg:person.010524222613.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jmerik", 
        "givenName": "V. N.", 
        "id": "sg:person.010773242043.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nechaev", 
        "givenName": "D. V.", 
        "id": "sg:person.012053211625.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053211625.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Chemistry and Biology, Link\u00f6ping University, Link\u00f6ping, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Link\u00f6ping University, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pozina", 
        "givenName": "G.", 
        "id": "sg:person.01230642714.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230642714.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat1726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638955", 
          "https://doi.org/10.1038/nmat1726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782608120099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794850", 
          "https://doi.org/10.1134/s1063782608120099"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-15", 
    "datePublishedReg": "2016-11-15", 
    "description": "Theoretical optimization of a quantum well heterostructure based on AlGaN solid solutions is implemented in order to attain the maximum charge carrier activation energy and the maximum exciton binding energy at a radiation wavelength of ~300 nm. An optimized structure sample with the radiative recombination dominating over the temperature range of 5 to 300 K and the room temperature internal quantum yield as high as 80% of the value measured at 5 K has been manufactured via plasma-assisted molecular beam epitaxy.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783416110366", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "plasma-assisted molecular beam epitaxy", 
      "quantum yield", 
      "quantum well heterostructure", 
      "internal quantum yield", 
      "molecular beam epitaxy", 
      "charge carrier activation energy", 
      "high quantum yield", 
      "carrier activation energy", 
      "well heterostructures", 
      "radiation wavelength", 
      "beam epitaxy", 
      "radiative recombination", 
      "structure samples", 
      "energy", 
      "theoretical optimization", 
      "excitons", 
      "heterostructures", 
      "epitaxy", 
      "wavelength", 
      "activation energy", 
      "temperature range", 
      "solid solution", 
      "recombination", 
      "yield", 
      "range", 
      "order", 
      "samples", 
      "values", 
      "solution", 
      "optimization", 
      "AlGaN solid solutions", 
      "maximum charge carrier activation energy", 
      "maximum exciton", 
      "optimized structure sample", 
      "room temperature internal quantum yield", 
      "temperature internal quantum yield"
    ], 
    "name": "AlGaN nanostructures with extremely high quantum yield at 300 K", 
    "pagination": "2261-2266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023291576"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783416110366"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783416110366", 
      "https://app.dimensions.ai/details/publication/pub.1023291576"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_692.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783416110366"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783416110366'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783416110366'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783416110366'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783416110366'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      63 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783416110366 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N44edb505c7f04b1292d82b36758ec403
4 schema:citation sg:pub.10.1038/nmat1726
5 sg:pub.10.1134/s1063782608120099
6 schema:datePublished 2016-11-15
7 schema:datePublishedReg 2016-11-15
8 schema:description Theoretical optimization of a quantum well heterostructure based on AlGaN solid solutions is implemented in order to attain the maximum charge carrier activation energy and the maximum exciton binding energy at a radiation wavelength of ~300 nm. An optimized structure sample with the radiative recombination dominating over the temperature range of 5 to 300 K and the room temperature internal quantum yield as high as 80% of the value measured at 5 K has been manufactured via plasma-assisted molecular beam epitaxy.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4a6110bb14fe4165ae5d39aedf059e8c
13 Na0c71841d1c742a1904b578e46e565f6
14 sg:journal.1136591
15 schema:keywords AlGaN solid solutions
16 activation energy
17 beam epitaxy
18 carrier activation energy
19 charge carrier activation energy
20 energy
21 epitaxy
22 excitons
23 heterostructures
24 high quantum yield
25 internal quantum yield
26 maximum charge carrier activation energy
27 maximum exciton
28 molecular beam epitaxy
29 optimization
30 optimized structure sample
31 order
32 plasma-assisted molecular beam epitaxy
33 quantum well heterostructure
34 quantum yield
35 radiation wavelength
36 radiative recombination
37 range
38 recombination
39 room temperature internal quantum yield
40 samples
41 solid solution
42 solution
43 structure samples
44 temperature internal quantum yield
45 temperature range
46 theoretical optimization
47 values
48 wavelength
49 well heterostructures
50 yield
51 schema:name AlGaN nanostructures with extremely high quantum yield at 300 K
52 schema:pagination 2261-2266
53 schema:productId N871c8b8e88434ea096002e7150252a00
54 Na730219102bd475da50eb2d6087d3c61
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023291576
56 https://doi.org/10.1134/s1063783416110366
57 schema:sdDatePublished 2021-12-01T19:35
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N533216bd44204f8aaafdff658b265a6e
60 schema:url https://doi.org/10.1134/s1063783416110366
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0e74f25baa2d4fe7922280550f3c2fc4 rdf:first sg:person.011332217145.87
65 rdf:rest Nb5724cb287b34e2c8f919e082e96f96d
66 N44edb505c7f04b1292d82b36758ec403 rdf:first sg:person.014125142357.87
67 rdf:rest N0e74f25baa2d4fe7922280550f3c2fc4
68 N4a6110bb14fe4165ae5d39aedf059e8c schema:volumeNumber 58
69 rdf:type schema:PublicationVolume
70 N533216bd44204f8aaafdff658b265a6e schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N5d948ad699a745f3b0f5b132521e4cc2 rdf:first sg:person.01230642714.20
73 rdf:rest Na132edc70c8a42eab5354aa8ed928b11
74 N871c8b8e88434ea096002e7150252a00 schema:name doi
75 schema:value 10.1134/s1063783416110366
76 rdf:type schema:PropertyValue
77 Na0c71841d1c742a1904b578e46e565f6 schema:issueNumber 11
78 rdf:type schema:PublicationIssue
79 Na132edc70c8a42eab5354aa8ed928b11 rdf:first sg:person.01064304443.31
80 rdf:rest rdf:nil
81 Na730219102bd475da50eb2d6087d3c61 schema:name dimensions_id
82 schema:value pub.1023291576
83 rdf:type schema:PropertyValue
84 Nace3db2bfd0a43c8ae46caa19917ab18 rdf:first sg:person.010773242043.36
85 rdf:rest Ncc5a344274264c18bec7479081858a84
86 Nb5724cb287b34e2c8f919e082e96f96d rdf:first sg:person.010524222613.44
87 rdf:rest Nace3db2bfd0a43c8ae46caa19917ab18
88 Ncc5a344274264c18bec7479081858a84 rdf:first sg:person.012053211625.45
89 rdf:rest N5d948ad699a745f3b0f5b132521e4cc2
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
95 rdf:type schema:DefinedTerm
96 sg:journal.1136591 schema:issn 0367-3294
97 1063-7834
98 schema:name Physics of the Solid State
99 schema:publisher Pleiades Publishing
100 rdf:type schema:Periodical
101 sg:person.010524222613.44 schema:affiliation grid-institutes:grid.423485.c
102 schema:familyName Shubina
103 schema:givenName T. V.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44
105 rdf:type schema:Person
106 sg:person.01064304443.31 schema:affiliation grid-institutes:grid.423485.c
107 schema:familyName Ivanov
108 schema:givenName S. V.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
110 rdf:type schema:Person
111 sg:person.010773242043.36 schema:affiliation grid-institutes:grid.423485.c
112 schema:familyName Jmerik
113 schema:givenName V. N.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36
115 rdf:type schema:Person
116 sg:person.011332217145.87 schema:affiliation grid-institutes:grid.423485.c
117 schema:familyName Shevchenko
118 schema:givenName E. A.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87
120 rdf:type schema:Person
121 sg:person.012053211625.45 schema:affiliation grid-institutes:grid.423485.c
122 schema:familyName Nechaev
123 schema:givenName D. V.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053211625.45
125 rdf:type schema:Person
126 sg:person.01230642714.20 schema:affiliation grid-institutes:grid.5640.7
127 schema:familyName Pozina
128 schema:givenName G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230642714.20
130 rdf:type schema:Person
131 sg:person.014125142357.87 schema:affiliation grid-institutes:grid.423485.c
132 schema:familyName Toropov
133 schema:givenName A. A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87
135 rdf:type schema:Person
136 sg:pub.10.1038/nmat1726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638955
137 https://doi.org/10.1038/nmat1726
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s1063782608120099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794850
140 https://doi.org/10.1134/s1063782608120099
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
143 schema:name Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
144 rdf:type schema:Organization
145 grid-institutes:grid.5640.7 schema:alternateName Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
146 schema:name Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...