Ontology type: schema:ScholarlyArticle
2014-04
AUTHORST. A. Vartanyan, I. A. Gladskikh, N. B. Leonov, S. G. Przhibel’skii
ABSTRACTChanges in electrical resistance of silver films were measured in the range from 1013 to 103 Ω during thermal deposition on sapphire in a high vacuum, after the deposition over time, and under an applied voltage. The dependences of the electrical resistance of the films on their thickness and deposition rate were determined. It was established that, with an increase in the film thickness from 2 to 10 nm during the deposition at rates of 0.6 and 0.1 Å/s, the resistance decreases by 7.5 and 4 orders of magnitude, respectively. The measured dependences of the resistance on the deposition time were found to be close to exponential. The room-temperature resistance of 10-nm-thick films deposited at different rates changed spontaneously by 3–4 orders of magnitude in different ways: the resistance of the slowly deposited films spontaneously increased, whereas in the rapidly deposited films, it spontaneously decreased. After fine annealing, the steady-state resistance changed also differently: it increased by 2 orders of magnitude in the former case and by 9 orders of magnitude in the latter case. Under voltages above 5 V, the resistance of the rapidly deposited films abruptly decreased from ∼1012 to ∼106 Ω, and these films became ohmic. After fine annealing, they became again high-ohmic. Under voltages above 5 V, the high-ohmic films thus obtained became again low-ohmic. This cycle of electrical conductivity switching was reproduced many times. The observed phenomena were explained in the framework of the hypothesis of the formation of fine metastable structures in channels of labyrinth films, namely, protrusions and bridges that bring together the boundaries of islands and connect them into conducting clusters, respectively. More... »
PAGES816-822
http://scigraph.springernature.com/pub.10.1134/s1063783414040349
DOIhttp://dx.doi.org/10.1134/s1063783414040349
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1045090023
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "ITMO University",
"id": "https://www.grid.ac/institutes/grid.35915.3b",
"name": [
"St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, 197101, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Vartanyan",
"givenName": "T. A.",
"id": "sg:person.014263047335.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263047335.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "ITMO University",
"id": "https://www.grid.ac/institutes/grid.35915.3b",
"name": [
"St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, 197101, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Gladskikh",
"givenName": "I. A.",
"id": "sg:person.012610623437.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610623437.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "ITMO University",
"id": "https://www.grid.ac/institutes/grid.35915.3b",
"name": [
"St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, 197101, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Leonov",
"givenName": "N. B.",
"id": "sg:person.014700773264.74",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014700773264.74"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "ITMO University",
"id": "https://www.grid.ac/institutes/grid.35915.3b",
"name": [
"St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy pr. 49, 197101, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Przhibel\u2019skii",
"givenName": "S. G.",
"id": "sg:person.016263356305.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016263356305.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1063/1.1622990",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057726880"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1722742",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057789717"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.47.13782",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060565246"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.47.13782",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060565246"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.78.155131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060626357"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.78.155131",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060626357"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.49.1444",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060787672"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.49.1444",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060787672"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-04",
"datePublishedReg": "2014-04-01",
"description": "Changes in electrical resistance of silver films were measured in the range from 1013 to 103 \u03a9 during thermal deposition on sapphire in a high vacuum, after the deposition over time, and under an applied voltage. The dependences of the electrical resistance of the films on their thickness and deposition rate were determined. It was established that, with an increase in the film thickness from 2 to 10 nm during the deposition at rates of 0.6 and 0.1 \u00c5/s, the resistance decreases by 7.5 and 4 orders of magnitude, respectively. The measured dependences of the resistance on the deposition time were found to be close to exponential. The room-temperature resistance of 10-nm-thick films deposited at different rates changed spontaneously by 3\u20134 orders of magnitude in different ways: the resistance of the slowly deposited films spontaneously increased, whereas in the rapidly deposited films, it spontaneously decreased. After fine annealing, the steady-state resistance changed also differently: it increased by 2 orders of magnitude in the former case and by 9 orders of magnitude in the latter case. Under voltages above 5 V, the resistance of the rapidly deposited films abruptly decreased from \u223c1012 to \u223c106 \u03a9, and these films became ohmic. After fine annealing, they became again high-ohmic. Under voltages above 5 V, the high-ohmic films thus obtained became again low-ohmic. This cycle of electrical conductivity switching was reproduced many times. The observed phenomena were explained in the framework of the hypothesis of the formation of fine metastable structures in channels of labyrinth films, namely, protrusions and bridges that bring together the boundaries of islands and connect them into conducting clusters, respectively.",
"genre": "research_article",
"id": "sg:pub.10.1134/s1063783414040349",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136591",
"issn": [
"0367-3294",
"1063-7834"
],
"name": "Physics of the Solid State",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "56"
}
],
"name": "Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire",
"pagination": "816-822",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d6c7380754cf1d98c46511f64ad1c5a5fe61b586d29da4ff834bea865b5305c6"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063783414040349"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045090023"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063783414040349",
"https://app.dimensions.ai/details/publication/pub.1045090023"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000507.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1134%2FS1063783414040349"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783414040349'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783414040349'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783414040349'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783414040349'
This table displays all metadata directly associated to this object as RDF triples.
97 TRIPLES
21 PREDICATES
32 URIs
19 LITERALS
7 BLANK NODES