Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

D. A. Balaev, S. V. Semenov, M. I. Petrov

ABSTRACT

Experiments have been presented that demonstrate the effect of the compression of a magnetic flux in grain boundaries of a granular high-temperature superconductor in an external magnetic field on the dissipation processes. The compression of the magnetic flux is associated with the diamagnetic behavior of superconducting grains and the existence of a Josephson medium in grain boundaries. Under these conditions, grain boundaries are in an effective magnetic field that depends on the magnetic state (magnetization) of the superconducting grains. Based on the analysis of experimental data (dependences of the electrical resistance R and magnetization on the magnetic field H and temperature T, as well as current-voltage characteristics), the conclusion has been drawn that it is the temperature evolution of the effective magnetic field in the intergranular medium which primarily determines the behavior of the dependences R(T) in weak external magnetic fields of no more than ∼103 Oe. This should be taken into account in the interpretation of experiments on the magnetoresistance effect in granular high-temperature superconductors in terms of different theories. The conclusion drawn here also implies a significant correction of the previously obtained results. More... »

PAGES

2422-2430

References to SciGraph publications

  • 2009-06. Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors in PHYSICS OF THE SOLID STATE
  • 2011-12. Pinning in a porous high-temperature superconductor Bi2223 in PHYSICS OF THE SOLID STATE
  • 2007-12. Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2008-06. Hysteresis of the magnetoresistance of granular HTSC YBa2Cu3O7 − δ in weak fields in PHYSICS OF THE SOLID STATE
  • 2009-02. Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2011-05. General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems in PHYSICS OF THE SOLID STATE
  • 2001-11. Magnetic field penetration into the weak-link system of the YBa2Cu3O7−x granular superconductor in PHYSICS OF THE SOLID STATE
  • 2011-05. Magnetoresistance of superconducting grains in ceramic YBa2Cu3O7 − δ high-temperature superconductors in weak magnetic fields in PHYSICS OF THE SOLID STATE
  • 2006-08. Effect of an external magnetic field and a trapped magnetic flux on the current-voltage characteristics of a granular high-temperature superconductor YBa2Cu3O7−δ in PHYSICS OF THE SOLID STATE
  • 2011-08. Fractal dimension of structural inhomogeneities in granular YBCO superconductor in magnetic field in TECHNICAL PHYSICS LETTERS
  • 2012-11. Specific features in the hysteretic behavior of the magnetoresistance of granular high-temperature superconductors in PHYSICS OF THE SOLID STATE
  • 2001-07. Resistive state of superconducting structures with fractal clusters of a normal phase in PHYSICS OF THE SOLID STATE
  • 2006-05. Mechanisms of dissipation in a Josephson medium based on a high-temperature superconductor in a magnetic field in PHYSICS OF THE SOLID STATE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063783413120044

    DOI

    http://dx.doi.org/10.1134/s1063783413120044

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009212361


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.415877.8", 
              "name": [
                "Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-38, 660036, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balaev", 
            "givenName": "D. A.", 
            "id": "sg:person.016644574131.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.415877.8", 
              "name": [
                "Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-38, 660036, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Semenov", 
            "givenName": "S. V.", 
            "id": "sg:person.016075657565.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075657565.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.415877.8", 
              "name": [
                "Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-38, 660036, Krasnoyarsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petrov", 
            "givenName": "M. I.", 
            "id": "sg:person.016243620370.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063783411050052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004055647", 
              "https://doi.org/10.1134/s1063783411050052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783406080051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005443761", 
              "https://doi.org/10.1134/s1063783406080051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106378340906002x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005506873", 
              "https://doi.org/10.1134/s106378340906002x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/14/11/304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006815953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783406050039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010115514", 
              "https://doi.org/10.1134/s1063783406050039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(03)00963-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011035088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(03)00963-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011035088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/17/1/031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017076558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783411120250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020143446", 
              "https://doi.org/10.1134/s1063783411120250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.094519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026002040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.64.094519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026002040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/14/5/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033723196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-2048/1/6/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038699741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106378501108027x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039674947", 
              "https://doi.org/10.1134/s106378501108027x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783411050295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039905313", 
              "https://doi.org/10.1134/s1063783411050295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106377610902006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040547311", 
              "https://doi.org/10.1134/s106377610902006x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106377610902006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040547311", 
              "https://doi.org/10.1134/s106377610902006x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783412110030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041583537", 
              "https://doi.org/10.1134/s1063783412110030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(97)00168-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045376575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.184514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050191253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.66.184514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050191253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783408060012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051851089", 
              "https://doi.org/10.1134/s1063783408060012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776107120084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052605203", 
              "https://doi.org/10.1134/s1063776107120084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1386449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052996591", 
              "https://doi.org/10.1134/1.1386449"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1417171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053682586", 
              "https://doi.org/10.1134/1.1417171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3657775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057993321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.4701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060549544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.39.4701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060549544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.6181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060555744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.42.6181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060555744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.10538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.43.10538", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060556453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.44.863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.44.863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060560167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.5607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060561750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.45.5607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060561750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.3388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.3388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.3423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.48.3423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060568420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.6985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060571281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.49.6985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060571281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.12950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.12950", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060572724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.50.478", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060573923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.11838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.11838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060574959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.1393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060575276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.51.1393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060575276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.9107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060584868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.55.9107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060584868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.224511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.63.224511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060599871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.22.1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060772194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.22.1364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060772194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.60.1061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.60.1061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.62.1415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060798480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.9.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.9.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060825981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.66.1125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.66.1125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839310"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "Experiments have been presented that demonstrate the effect of the compression of a magnetic flux in grain boundaries of a granular high-temperature superconductor in an external magnetic field on the dissipation processes. The compression of the magnetic flux is associated with the diamagnetic behavior of superconducting grains and the existence of a Josephson medium in grain boundaries. Under these conditions, grain boundaries are in an effective magnetic field that depends on the magnetic state (magnetization) of the superconducting grains. Based on the analysis of experimental data (dependences of the electrical resistance R and magnetization on the magnetic field H and temperature T, as well as current-voltage characteristics), the conclusion has been drawn that it is the temperature evolution of the effective magnetic field in the intergranular medium which primarily determines the behavior of the dependences R(T) in weak external magnetic fields of no more than \u223c103 Oe. This should be taken into account in the interpretation of experiments on the magnetoresistance effect in granular high-temperature superconductors in terms of different theories. The conclusion drawn here also implies a significant correction of the previously obtained results.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063783413120044", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136591", 
            "issn": [
              "0367-3294", 
              "1063-7834"
            ], 
            "name": "Physics of the Solid State", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "name": "Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field", 
        "pagination": "2422-2430", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2be2a3a6f76ecb93b67fca481c55d89506723dc4b4a86e9f05a4ec7ac2d05669"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063783413120044"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009212361"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063783413120044", 
          "https://app.dimensions.ai/details/publication/pub.1009212361"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134%2FS1063783413120044"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783413120044'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783413120044'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783413120044'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783413120044'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063783413120044 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N130d89ea02444cf48aa06e31e722e29a
    4 schema:citation sg:pub.10.1134/1.1386449
    5 sg:pub.10.1134/1.1417171
    6 sg:pub.10.1134/s1063776107120084
    7 sg:pub.10.1134/s106377610902006x
    8 sg:pub.10.1134/s1063783406050039
    9 sg:pub.10.1134/s1063783406080051
    10 sg:pub.10.1134/s1063783408060012
    11 sg:pub.10.1134/s106378340906002x
    12 sg:pub.10.1134/s1063783411050052
    13 sg:pub.10.1134/s1063783411050295
    14 sg:pub.10.1134/s1063783411120250
    15 sg:pub.10.1134/s1063783412110030
    16 sg:pub.10.1134/s106378501108027x
    17 https://doi.org/10.1016/s0921-4534(03)00963-8
    18 https://doi.org/10.1016/s0921-4534(97)00168-8
    19 https://doi.org/10.1063/1.3657775
    20 https://doi.org/10.1088/0953-2048/1/6/017
    21 https://doi.org/10.1088/0953-2048/14/11/304
    22 https://doi.org/10.1088/0953-2048/14/5/302
    23 https://doi.org/10.1088/0953-2048/17/1/031
    24 https://doi.org/10.1103/physrevb.39.4701
    25 https://doi.org/10.1103/physrevb.42.6181
    26 https://doi.org/10.1103/physrevb.43.10538
    27 https://doi.org/10.1103/physrevb.44.863
    28 https://doi.org/10.1103/physrevb.45.5607
    29 https://doi.org/10.1103/physrevb.48.3388
    30 https://doi.org/10.1103/physrevb.48.3423
    31 https://doi.org/10.1103/physrevb.49.6985
    32 https://doi.org/10.1103/physrevb.50.12950
    33 https://doi.org/10.1103/physrevb.50.478
    34 https://doi.org/10.1103/physrevb.51.11838
    35 https://doi.org/10.1103/physrevb.51.1393
    36 https://doi.org/10.1103/physrevb.55.9107
    37 https://doi.org/10.1103/physrevb.63.224511
    38 https://doi.org/10.1103/physrevb.64.094519
    39 https://doi.org/10.1103/physrevb.66.184514
    40 https://doi.org/10.1103/physrevlett.22.1364
    41 https://doi.org/10.1103/physrevlett.60.1061
    42 https://doi.org/10.1103/physrevlett.62.1415
    43 https://doi.org/10.1103/physrevlett.9.309
    44 https://doi.org/10.1103/revmodphys.66.1125
    45 schema:datePublished 2013-12
    46 schema:datePublishedReg 2013-12-01
    47 schema:description Experiments have been presented that demonstrate the effect of the compression of a magnetic flux in grain boundaries of a granular high-temperature superconductor in an external magnetic field on the dissipation processes. The compression of the magnetic flux is associated with the diamagnetic behavior of superconducting grains and the existence of a Josephson medium in grain boundaries. Under these conditions, grain boundaries are in an effective magnetic field that depends on the magnetic state (magnetization) of the superconducting grains. Based on the analysis of experimental data (dependences of the electrical resistance R and magnetization on the magnetic field H and temperature T, as well as current-voltage characteristics), the conclusion has been drawn that it is the temperature evolution of the effective magnetic field in the intergranular medium which primarily determines the behavior of the dependences R(T) in weak external magnetic fields of no more than ∼103 Oe. This should be taken into account in the interpretation of experiments on the magnetoresistance effect in granular high-temperature superconductors in terms of different theories. The conclusion drawn here also implies a significant correction of the previously obtained results.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree false
    51 schema:isPartOf N57e69516af6b4edf9e4ff0415226ebad
    52 Ncd2234a92f264be7a0470f1bfe4efdfb
    53 sg:journal.1136591
    54 schema:name Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field
    55 schema:pagination 2422-2430
    56 schema:productId N1703a6118fa04edd9f8b45c03e37b0d7
    57 Nb7cc5372d87847b09448b9736c543345
    58 Nf5ab35742db74de892713e77b019ff55
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009212361
    60 https://doi.org/10.1134/s1063783413120044
    61 schema:sdDatePublished 2019-04-10T15:49
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N42d0c7b44e4046898cbdba1ee250ce68
    64 schema:url http://link.springer.com/10.1134%2FS1063783413120044
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N130d89ea02444cf48aa06e31e722e29a rdf:first sg:person.016644574131.64
    69 rdf:rest N1df133cd0bdd4f99b56b6c504415d700
    70 N1396641d6de54375a1e2ca5da8314a47 rdf:first sg:person.016243620370.10
    71 rdf:rest rdf:nil
    72 N1703a6118fa04edd9f8b45c03e37b0d7 schema:name dimensions_id
    73 schema:value pub.1009212361
    74 rdf:type schema:PropertyValue
    75 N1df133cd0bdd4f99b56b6c504415d700 rdf:first sg:person.016075657565.68
    76 rdf:rest N1396641d6de54375a1e2ca5da8314a47
    77 N42d0c7b44e4046898cbdba1ee250ce68 schema:name Springer Nature - SN SciGraph project
    78 rdf:type schema:Organization
    79 N57e69516af6b4edf9e4ff0415226ebad schema:volumeNumber 55
    80 rdf:type schema:PublicationVolume
    81 Nb7cc5372d87847b09448b9736c543345 schema:name readcube_id
    82 schema:value 2be2a3a6f76ecb93b67fca481c55d89506723dc4b4a86e9f05a4ec7ac2d05669
    83 rdf:type schema:PropertyValue
    84 Ncd2234a92f264be7a0470f1bfe4efdfb schema:issueNumber 12
    85 rdf:type schema:PublicationIssue
    86 Nf5ab35742db74de892713e77b019ff55 schema:name doi
    87 schema:value 10.1134/s1063783413120044
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Materials Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1136591 schema:issn 0367-3294
    96 1063-7834
    97 schema:name Physics of the Solid State
    98 rdf:type schema:Periodical
    99 sg:person.016075657565.68 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
    100 schema:familyName Semenov
    101 schema:givenName S. V.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016075657565.68
    103 rdf:type schema:Person
    104 sg:person.016243620370.10 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
    105 schema:familyName Petrov
    106 schema:givenName M. I.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10
    108 rdf:type schema:Person
    109 sg:person.016644574131.64 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
    110 schema:familyName Balaev
    111 schema:givenName D. A.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64
    113 rdf:type schema:Person
    114 sg:pub.10.1134/1.1386449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052996591
    115 https://doi.org/10.1134/1.1386449
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1134/1.1417171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053682586
    118 https://doi.org/10.1134/1.1417171
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1134/s1063776107120084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052605203
    121 https://doi.org/10.1134/s1063776107120084
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1134/s106377610902006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040547311
    124 https://doi.org/10.1134/s106377610902006x
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1134/s1063783406050039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010115514
    127 https://doi.org/10.1134/s1063783406050039
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1134/s1063783406080051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005443761
    130 https://doi.org/10.1134/s1063783406080051
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1134/s1063783408060012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051851089
    133 https://doi.org/10.1134/s1063783408060012
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1134/s106378340906002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005506873
    136 https://doi.org/10.1134/s106378340906002x
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1134/s1063783411050052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055647
    139 https://doi.org/10.1134/s1063783411050052
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1134/s1063783411050295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039905313
    142 https://doi.org/10.1134/s1063783411050295
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1134/s1063783411120250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020143446
    145 https://doi.org/10.1134/s1063783411120250
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1134/s1063783412110030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583537
    148 https://doi.org/10.1134/s1063783412110030
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1134/s106378501108027x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039674947
    151 https://doi.org/10.1134/s106378501108027x
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/s0921-4534(03)00963-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011035088
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s0921-4534(97)00168-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045376575
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1063/1.3657775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993321
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1088/0953-2048/1/6/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038699741
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1088/0953-2048/14/11/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006815953
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1088/0953-2048/14/5/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033723196
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1088/0953-2048/17/1/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017076558
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.39.4701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549544
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevb.42.6181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060555744
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.43.10538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556453
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevb.44.863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560167
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevb.45.5607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561750
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1103/physrevb.48.3388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568414
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1103/physrevb.48.3423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568420
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1103/physrevb.49.6985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571281
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1103/physrevb.50.12950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572724
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevb.50.478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573923
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevb.51.11838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574959
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevb.51.1393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060575276
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/physrevb.55.9107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584868
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1103/physrevb.63.224511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599871
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1103/physrevb.64.094519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026002040
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1103/physrevb.66.184514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050191253
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1103/physrevlett.22.1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060772194
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1103/physrevlett.60.1061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796618
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1103/physrevlett.62.1415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798480
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1103/physrevlett.9.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825981
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1103/revmodphys.66.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839310
    208 rdf:type schema:CreativeWork
    209 https://www.grid.ac/institutes/grid.415877.8 schema:alternateName Siberian Branch of the Russian Academy of Sciences
    210 schema:name Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-38, 660036, Krasnoyarsk, Russia
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...