Control of the motion of nanoelectromechanical systems based on carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

O. V. Ershova, Yu. E. Lozovik, A. M. Popov, O. N. Bubel’, N. A. Poklonskiĭ, E. F. Kislyakov

ABSTRACT

A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube and, then, the electric dipole moment thus induced can be set in motion under the effect of a nonuniform electric field. The electric dipole moments of chemically modified nanotubes are calculated for the first time. The possibility of controlling the motion of nanotube-based nanoelectromechanical systems with the proposed method is demonstrated using a gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator and the controlling electric field are calculated. More... »

PAGES

2010-2014

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783407100332

DOI

http://dx.doi.org/10.1134/s1063783407100332

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031644798


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology, Institutski\u012d per. 9, 141700, Dolgoprudny\u012d Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Moscow Institute of Physics and Technology, Institutski\u012d per. 9, 141700, Dolgoprudny\u012d Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ershova", 
        "givenName": "O. V.", 
        "id": "sg:person.0667005713.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667005713.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465320.6", 
          "name": [
            "Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozovik", 
        "givenName": "Yu. E.", 
        "id": "sg:person.013154233361.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154233361.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465320.6", 
          "name": [
            "Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "A. M.", 
        "id": "sg:person.013406333115.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013406333115.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bubel\u2019", 
        "givenName": "O. N.", 
        "id": "sg:person.012765005437.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765005437.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonski\u012d", 
        "givenName": "N. A.", 
        "id": "sg:person.015656403561.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kislyakov", 
        "givenName": "E. F.", 
        "id": "sg:person.012716672237.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716672237.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/381678a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036830729", 
          "https://doi.org/10.1038/381678a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052384493", 
          "https://doi.org/10.1038/nature01823"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube and, then, the electric dipole moment thus induced can be set in motion under the effect of a nonuniform electric field. The electric dipole moments of chemically modified nanotubes are calculated for the first time. The possibility of controlling the motion of nanotube-based nanoelectromechanical systems with the proposed method is demonstrated using a gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator and the controlling electric field are calculated.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783407100332", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "carbon nanotubes", 
      "nanotube-based nanoelectromechanical systems", 
      "gigahertz oscillators", 
      "dipole moment", 
      "single-walled nanotubes", 
      "chemical adsorption", 
      "nanoelectromechanical systems", 
      "electric dipole moment", 
      "nanotubes", 
      "electric field", 
      "nonuniform electric field", 
      "adsorption", 
      "first time", 
      "atoms", 
      "molecules", 
      "open end", 
      "new method", 
      "method", 
      "moment", 
      "system", 
      "field", 
      "effect", 
      "possibility", 
      "time", 
      "characteristics", 
      "example", 
      "motion", 
      "oscillator", 
      "end", 
      "control"
    ], 
    "name": "Control of the motion of nanoelectromechanical systems based on carbon nanotubes", 
    "pagination": "2010-2014", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031644798"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783407100332"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783407100332", 
      "https://app.dimensions.ai/details/publication/pub.1031644798"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_444.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783407100332"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100332'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100332'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100332'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100332'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      61 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783407100332 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nbf3874147b284588a3400ef438e7085a
6 schema:citation sg:pub.10.1038/354056a0
7 sg:pub.10.1038/381678a0
8 sg:pub.10.1038/nature01823
9 schema:datePublished 2007-10
10 schema:datePublishedReg 2007-10-01
11 schema:description A new method is proposed for controlling the motion of nanoelectromechanical systems based on carbon nanotubes. In this method, a single-walled nanotube acquires an electric dipole moment owing to the chemical adsorption of atoms or molecules at open ends of the nanotube and, then, the electric dipole moment thus induced can be set in motion under the effect of a nonuniform electric field. The electric dipole moments of chemically modified nanotubes are calculated for the first time. The possibility of controlling the motion of nanotube-based nanoelectromechanical systems with the proposed method is demonstrated using a gigahertz oscillator as an example. The operating characteristics of the gigahertz oscillator and the controlling electric field are calculated.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N194a90b996c549fbaf6d9c6f1d5566c4
16 N338320eb6ad0473c91bce57e5b25225d
17 sg:journal.1136591
18 schema:keywords adsorption
19 atoms
20 carbon nanotubes
21 characteristics
22 chemical adsorption
23 control
24 dipole moment
25 effect
26 electric dipole moment
27 electric field
28 end
29 example
30 field
31 first time
32 gigahertz oscillators
33 method
34 molecules
35 moment
36 motion
37 nanoelectromechanical systems
38 nanotube-based nanoelectromechanical systems
39 nanotubes
40 new method
41 nonuniform electric field
42 open end
43 oscillator
44 possibility
45 single-walled nanotubes
46 system
47 time
48 schema:name Control of the motion of nanoelectromechanical systems based on carbon nanotubes
49 schema:pagination 2010-2014
50 schema:productId N162c00fe5dbe41e1a5858f0b8f775f9b
51 Ncc8825cb03364433abf0f253e8a2fc56
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031644798
53 https://doi.org/10.1134/s1063783407100332
54 schema:sdDatePublished 2022-01-01T18:17
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N975aae0efa074e018c086dcb8a71de07
57 schema:url https://doi.org/10.1134/s1063783407100332
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0937bdcb519d4e9fb003702712a0931d rdf:first sg:person.013154233361.60
62 rdf:rest N61368c3527c54a45a57f3c1eca3547fe
63 N162c00fe5dbe41e1a5858f0b8f775f9b schema:name dimensions_id
64 schema:value pub.1031644798
65 rdf:type schema:PropertyValue
66 N194a90b996c549fbaf6d9c6f1d5566c4 schema:volumeNumber 49
67 rdf:type schema:PublicationVolume
68 N338320eb6ad0473c91bce57e5b25225d schema:issueNumber 10
69 rdf:type schema:PublicationIssue
70 N3a612040b00a466b97322361ea680d65 rdf:first sg:person.015656403561.19
71 rdf:rest Nd3a76bfebc604b74803245684962aa44
72 N5a7e8f05242f40b7992f885377bda1ed rdf:first sg:person.012765005437.97
73 rdf:rest N3a612040b00a466b97322361ea680d65
74 N61368c3527c54a45a57f3c1eca3547fe rdf:first sg:person.013406333115.02
75 rdf:rest N5a7e8f05242f40b7992f885377bda1ed
76 N975aae0efa074e018c086dcb8a71de07 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nbf3874147b284588a3400ef438e7085a rdf:first sg:person.0667005713.50
79 rdf:rest N0937bdcb519d4e9fb003702712a0931d
80 Ncc8825cb03364433abf0f253e8a2fc56 schema:name doi
81 schema:value 10.1134/s1063783407100332
82 rdf:type schema:PropertyValue
83 Nd3a76bfebc604b74803245684962aa44 rdf:first sg:person.012716672237.51
84 rdf:rest rdf:nil
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
89 schema:name Classical Physics
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
92 schema:name Condensed Matter Physics
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
95 schema:name Quantum Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1136591 schema:issn 0367-3294
98 1063-7834
99 schema:name Physics of the Solid State
100 schema:publisher Pleiades Publishing
101 rdf:type schema:Periodical
102 sg:person.012716672237.51 schema:affiliation grid-institutes:grid.17678.3f
103 schema:familyName Kislyakov
104 schema:givenName E. F.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716672237.51
106 rdf:type schema:Person
107 sg:person.012765005437.97 schema:affiliation grid-institutes:grid.17678.3f
108 schema:familyName Bubel’
109 schema:givenName O. N.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765005437.97
111 rdf:type schema:Person
112 sg:person.013154233361.60 schema:affiliation grid-institutes:grid.465320.6
113 schema:familyName Lozovik
114 schema:givenName Yu. E.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154233361.60
116 rdf:type schema:Person
117 sg:person.013406333115.02 schema:affiliation grid-institutes:grid.465320.6
118 schema:familyName Popov
119 schema:givenName A. M.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013406333115.02
121 rdf:type schema:Person
122 sg:person.015656403561.19 schema:affiliation grid-institutes:grid.17678.3f
123 schema:familyName Poklonskiĭ
124 schema:givenName N. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19
126 rdf:type schema:Person
127 sg:person.0667005713.50 schema:affiliation grid-institutes:grid.18763.3b
128 schema:familyName Ershova
129 schema:givenName O. V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667005713.50
131 rdf:type schema:Person
132 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
133 https://doi.org/10.1038/354056a0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/381678a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036830729
136 https://doi.org/10.1038/381678a0
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature01823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052384493
139 https://doi.org/10.1038/nature01823
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.17678.3f schema:alternateName Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus
142 schema:name Belarussian State University, pr. Nezavisimosti 4, 220030, Minsk, Belarus
143 rdf:type schema:Organization
144 grid-institutes:grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology, Institutskiĭ per. 9, 141700, Dolgoprudnyĭ Moscow oblast, Russia
145 schema:name Moscow Institute of Physics and Technology, Institutskiĭ per. 9, 141700, Dolgoprudnyĭ Moscow oblast, Russia
146 rdf:type schema:Organization
147 grid-institutes:grid.465320.6 schema:alternateName Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia
148 schema:name Institute of Spectroscopy, Russian Academy of Sciences, 142190, Troitsk, Moscow oblast, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...