Density of states of a one-dimensional disordered photonic crystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

A. A. Greshnov, M. A. Kaliteevskiĭ, R. A. Abram, S. Brand, G. G. Zegrya

ABSTRACT

An analytic theory of the density of states in one-dimensional disordered photonic crystals is proposed. It is shown that the problem of the density of optical modes can be reduced in the small dielectric contrast approximation to solving a generalized Fokker-Planck equation for the distribution function of the logarithmic derivative of the electric field (the wave phase). The exact analytic solution and density-of-states asymptotics deep in the band gap of the photonic crystal and close to the band gap edge are derived. The results obtained agree well with the empirical relations derived earlier from numerical experiments. More... »

PAGES

1999-2003

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783407100319

DOI

http://dx.doi.org/10.1134/s1063783407100319

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041310338


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greshnov", 
        "givenName": "A. A.", 
        "id": "sg:person.012301620167.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012301620167.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Durham University, 3LE, Durham, DH1, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Department of Physics, Durham University, 3LE, Durham, DH1, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaliteevski\u012d", 
        "givenName": "M. A.", 
        "id": "sg:person.014454350336.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454350336.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Durham University, 3LE, Durham, DH1, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Physics, Durham University, 3LE, Durham, DH1, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abram", 
        "givenName": "R. A.", 
        "id": "sg:person.010753051671.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753051671.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Durham University, 3LE, Durham, DH1, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Physics, Durham University, 3LE, Durham, DH1, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brand", 
        "givenName": "S.", 
        "id": "sg:person.0773064171.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773064171.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zegrya", 
        "givenName": "G. G.", 
        "id": "sg:person.07547630255.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547630255.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "An analytic theory of the density of states in one-dimensional disordered photonic crystals is proposed. It is shown that the problem of the density of optical modes can be reduced in the small dielectric contrast approximation to solving a generalized Fokker-Planck equation for the distribution function of the logarithmic derivative of the electric field (the wave phase). The exact analytic solution and density-of-states asymptotics deep in the band gap of the photonic crystal and close to the band gap edge are derived. The results obtained agree well with the empirical relations derived earlier from numerical experiments.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783407100319", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "photonic crystals", 
      "density of states", 
      "band gap edge", 
      "generalized Fokker-Planck equation", 
      "optical modes", 
      "Fokker-Planck equation", 
      "exact analytic solution", 
      "band gap", 
      "gap edge", 
      "electric field", 
      "analytic theory", 
      "analytic solution", 
      "distribution function", 
      "numerical experiments", 
      "logarithmic derivative", 
      "crystals", 
      "empirical relation", 
      "density", 
      "state", 
      "asymptotics", 
      "approximation", 
      "equations", 
      "field", 
      "mode", 
      "gap", 
      "theory", 
      "edge", 
      "problem", 
      "solution", 
      "experiments", 
      "function", 
      "derivatives", 
      "results", 
      "relation"
    ], 
    "name": "Density of states of a one-dimensional disordered photonic crystal", 
    "pagination": "1999-2003", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041310338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783407100319"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783407100319", 
      "https://app.dimensions.ai/details/publication/pub.1041310338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_446.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783407100319"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100319'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100319'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100319'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783407100319'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      60 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783407100319 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nfd228cc298244353a54bca341c97a409
4 schema:datePublished 2007-10
5 schema:datePublishedReg 2007-10-01
6 schema:description An analytic theory of the density of states in one-dimensional disordered photonic crystals is proposed. It is shown that the problem of the density of optical modes can be reduced in the small dielectric contrast approximation to solving a generalized Fokker-Planck equation for the distribution function of the logarithmic derivative of the electric field (the wave phase). The exact analytic solution and density-of-states asymptotics deep in the band gap of the photonic crystal and close to the band gap edge are derived. The results obtained agree well with the empirical relations derived earlier from numerical experiments.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4b424827e2294dd090e062255d699cb2
11 Nc36991142b844c1d90094aaf416cb3a9
12 sg:journal.1136591
13 schema:keywords Fokker-Planck equation
14 analytic solution
15 analytic theory
16 approximation
17 asymptotics
18 band gap
19 band gap edge
20 crystals
21 density
22 density of states
23 derivatives
24 distribution function
25 edge
26 electric field
27 empirical relation
28 equations
29 exact analytic solution
30 experiments
31 field
32 function
33 gap
34 gap edge
35 generalized Fokker-Planck equation
36 logarithmic derivative
37 mode
38 numerical experiments
39 optical modes
40 photonic crystals
41 problem
42 relation
43 results
44 solution
45 state
46 theory
47 schema:name Density of states of a one-dimensional disordered photonic crystal
48 schema:pagination 1999-2003
49 schema:productId N67454ca11b1e490c9d1513c5d83ee9d2
50 Nbbd2a8e8a4c4499382a886f08720c722
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310338
52 https://doi.org/10.1134/s1063783407100319
53 schema:sdDatePublished 2022-05-10T09:58
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nf8ade077210246768c30b3e1a79245af
56 schema:url https://doi.org/10.1134/s1063783407100319
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N1327b6ff06044c3a9dddaa9fed40cd3f rdf:first sg:person.010753051671.18
61 rdf:rest Naf3c75cdb5374e84be75d7691e4d6af0
62 N4b424827e2294dd090e062255d699cb2 schema:issueNumber 10
63 rdf:type schema:PublicationIssue
64 N5678a1e381514d4e8b6d8944e2d6c19d rdf:first sg:person.07547630255.44
65 rdf:rest rdf:nil
66 N67454ca11b1e490c9d1513c5d83ee9d2 schema:name dimensions_id
67 schema:value pub.1041310338
68 rdf:type schema:PropertyValue
69 Naf3c75cdb5374e84be75d7691e4d6af0 rdf:first sg:person.0773064171.81
70 rdf:rest N5678a1e381514d4e8b6d8944e2d6c19d
71 Nbbd2a8e8a4c4499382a886f08720c722 schema:name doi
72 schema:value 10.1134/s1063783407100319
73 rdf:type schema:PropertyValue
74 Nc36991142b844c1d90094aaf416cb3a9 schema:volumeNumber 49
75 rdf:type schema:PublicationVolume
76 Ned5b113914734ac2adc117746a2eefde rdf:first sg:person.014454350336.50
77 rdf:rest N1327b6ff06044c3a9dddaa9fed40cd3f
78 Nf8ade077210246768c30b3e1a79245af schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nfd228cc298244353a54bca341c97a409 rdf:first sg:person.012301620167.32
81 rdf:rest Ned5b113914734ac2adc117746a2eefde
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
86 schema:name Optical Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1136591 schema:issn 0367-3294
89 1063-7834
90 schema:name Physics of the Solid State
91 schema:publisher Pleiades Publishing
92 rdf:type schema:Periodical
93 sg:person.010753051671.18 schema:affiliation grid-institutes:grid.8250.f
94 schema:familyName Abram
95 schema:givenName R. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010753051671.18
97 rdf:type schema:Person
98 sg:person.012301620167.32 schema:affiliation grid-institutes:grid.423485.c
99 schema:familyName Greshnov
100 schema:givenName A. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012301620167.32
102 rdf:type schema:Person
103 sg:person.014454350336.50 schema:affiliation grid-institutes:grid.8250.f
104 schema:familyName Kaliteevskiĭ
105 schema:givenName M. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454350336.50
107 rdf:type schema:Person
108 sg:person.07547630255.44 schema:affiliation grid-institutes:grid.423485.c
109 schema:familyName Zegrya
110 schema:givenName G. G.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547630255.44
112 rdf:type schema:Person
113 sg:person.0773064171.81 schema:affiliation grid-institutes:grid.8250.f
114 schema:familyName Brand
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773064171.81
117 rdf:type schema:Person
118 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
119 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
120 rdf:type schema:Organization
121 grid-institutes:grid.8250.f schema:alternateName Department of Physics, Durham University, 3LE, Durham, DH1, UK
122 schema:name Department of Physics, Durham University, 3LE, Durham, DH1, UK
123 Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...