Investigation of the Josephson coupling through a magnetoactive barrier (ferrimagnet, paramagnet) in Y3/4Lu1/4Ba2Cu3O7 + Y3(Al1 − xFex)5O12 composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-11

AUTHORS

D. A. Balaev, S. I. Popkov, K. A. Shaĭkhutdinov, M. I. Petrov

ABSTRACT

The transport properties of two-phase composites consisting of a high-temperature superconductor and a nonsuperconducting component with magnetic ordering are analyzed. These composites are considered as a network of “superconductor-magnetoactive insulator-superconductor” weak links of the Josephson type. Substituted garnets Y3(Al1 − xFex)5O12 (x = 0, ..., 1.0) are used as a magnetoactive component. The composites under investigation contain 92.5 vol % Y3/4Lu1/4Ba2Cu3O7 (the high-temperature superconductor) and 7.5 vol % Y3(Al1 − xFex)5O12 (x = 0, ..., 1.0). It is shown that an increase in the iron content in the Y3(Al1 − xFex)5O12 garnet leads to a reduction of the Josephson coupling strength: the temperature range in which the electrical resistance of the composites is equal to zero is reduced, and the critical current density at a temperature of 4.2 K decreases exponentially. For composites in which the iron content in the Y3(Al1 − xFex)5O12 garnet is higher than 0.1, the temperature dependence of the electrical resistance R(T) at temperatures below the transition point TC of high-temperature superconductor crystallites has a portion in the range Tm-TC where the resistance R(T) is independent of the transport current and the magnetic field strength. Below the temperature Tm, the dependences of the electrical resistance R(T) of the composites are nonlinear functions of the current and involve a considerable contribution from magnetoresistance. This behavior is characteristic of a network of Josephson junctions. The temperature Tm decreases with an increase in the iron content in the Y3(Al1 − xFex)5O12 garnet. The appearance of the above feature in the temperature dependences of the electrical resistance R(T) is interpreted as complete suppression of the Josephson coupling in the temperature range above Tm due to the interaction of supercurrent carrier pairs with magnetic moments of iron atoms in the dielectric barriers separating high-temperature superconductor grains. More... »

PAGES

2046-2055

References to SciGraph publications

Journal

TITLE

Physics of the Solid State

ISSUE

11

VOLUME

48

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783406110023

DOI

http://dx.doi.org/10.1134/s1063783406110023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000151573


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balaev", 
        "givenName": "D. A.", 
        "id": "sg:person.016644574131.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popkov", 
        "givenName": "S. I.", 
        "id": "sg:person.012051026135.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051026135.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sha\u012dkhutdinov", 
        "givenName": "K. A.", 
        "id": "sg:person.011534463731.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534463731.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrov", 
        "givenName": "M. I.", 
        "id": "sg:person.016243620370.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-8853(02)00864-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002932734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004426087", 
          "https://doi.org/10.1007/s100510050100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/17/5/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006669873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83522-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009429644", 
          "https://doi.org/10.1007/978-3-322-83522-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-83522-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009429644", 
          "https://doi.org/10.1007/978-3-322-83522-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01333954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009758854", 
          "https://doi.org/10.1007/bf01333954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(80)90217-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012554119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-6090(80)90217-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012554119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2003.09.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015694211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1098(98)00583-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016376219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.012507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.012507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017796488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-2048/14/9/333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017884078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.11812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021789232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.11812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021789232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.180501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022627070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.180501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022627070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2004.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024795756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027624000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.2427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027624000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(82)90141-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027779847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(82)90141-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027779847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/11/4/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036119137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510170215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039023441", 
          "https://doi.org/10.1007/s100510170215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physc.2004.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043454149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-8853(01)00386-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044623854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1964.tb00998.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051283316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.3388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.3388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.12950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.12950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.064517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.064517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060598729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.144505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060611477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.22.1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.22.1364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060772194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.057002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.69.1152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063118510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0169.199907b.0737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071219467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0172.200202a.0113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071219826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/352760278x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109698706"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-11", 
    "datePublishedReg": "2006-11-01", 
    "description": "The transport properties of two-phase composites consisting of a high-temperature superconductor and a nonsuperconducting component with magnetic ordering are analyzed. These composites are considered as a network of \u201csuperconductor-magnetoactive insulator-superconductor\u201d weak links of the Josephson type. Substituted garnets Y3(Al1 \u2212 xFex)5O12 (x = 0, ..., 1.0) are used as a magnetoactive component. The composites under investigation contain 92.5 vol % Y3/4Lu1/4Ba2Cu3O7 (the high-temperature superconductor) and 7.5 vol % Y3(Al1 \u2212 xFex)5O12 (x = 0, ..., 1.0). It is shown that an increase in the iron content in the Y3(Al1 \u2212 xFex)5O12 garnet leads to a reduction of the Josephson coupling strength: the temperature range in which the electrical resistance of the composites is equal to zero is reduced, and the critical current density at a temperature of 4.2 K decreases exponentially. For composites in which the iron content in the Y3(Al1 \u2212 xFex)5O12 garnet is higher than 0.1, the temperature dependence of the electrical resistance R(T) at temperatures below the transition point TC of high-temperature superconductor crystallites has a portion in the range Tm-TC where the resistance R(T) is independent of the transport current and the magnetic field strength. Below the temperature Tm, the dependences of the electrical resistance R(T) of the composites are nonlinear functions of the current and involve a considerable contribution from magnetoresistance. This behavior is characteristic of a network of Josephson junctions. The temperature Tm decreases with an increase in the iron content in the Y3(Al1 \u2212 xFex)5O12 garnet. The appearance of the above feature in the temperature dependences of the electrical resistance R(T) is interpreted as complete suppression of the Josephson coupling in the temperature range above Tm due to the interaction of supercurrent carrier pairs with magnetic moments of iron atoms in the dielectric barriers separating high-temperature superconductor grains.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783406110023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Investigation of the Josephson coupling through a magnetoactive barrier (ferrimagnet, paramagnet) in Y3/4Lu1/4Ba2Cu3O7 + Y3(Al1 \u2212 xFex)5O12 composites", 
    "pagination": "2046-2055", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00b873c707069936323118900e4e2aad13cd3ebe98dd95fd73a65f003804d790"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783406110023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000151573"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783406110023", 
      "https://app.dimensions.ai/details/publication/pub.1000151573"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063783406110023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783406110023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783406110023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783406110023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783406110023'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783406110023 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne579c89678fb461986a144a9696531a3
4 schema:citation sg:pub.10.1007/978-3-322-83522-2
5 sg:pub.10.1007/bf01333954
6 sg:pub.10.1007/s100510050100
7 sg:pub.10.1007/s100510170215
8 https://doi.org/10.1002/352760278x
9 https://doi.org/10.1002/j.1538-7305.1964.tb00998.x
10 https://doi.org/10.1016/0038-1098(82)90141-7
11 https://doi.org/10.1016/0040-6090(80)90217-5
12 https://doi.org/10.1016/j.physc.2003.09.090
13 https://doi.org/10.1016/j.physc.2004.11.004
14 https://doi.org/10.1016/j.physc.2004.11.019
15 https://doi.org/10.1016/s0038-1098(98)00583-3
16 https://doi.org/10.1016/s0304-8853(01)00386-9
17 https://doi.org/10.1016/s0304-8853(02)00864-8
18 https://doi.org/10.1088/0953-2048/14/9/333
19 https://doi.org/10.1088/0953-2048/17/5/010
20 https://doi.org/10.1088/0953-8984/11/4/016
21 https://doi.org/10.1103/physrevb.41.791
22 https://doi.org/10.1103/physrevb.48.3388
23 https://doi.org/10.1103/physrevb.50.12950
24 https://doi.org/10.1103/physrevb.62.11812
25 https://doi.org/10.1103/physrevb.63.064517
26 https://doi.org/10.1103/physrevb.70.144505
27 https://doi.org/10.1103/physrevb.71.012507
28 https://doi.org/10.1103/physrevb.71.180501
29 https://doi.org/10.1103/physrevlett.22.1364
30 https://doi.org/10.1103/physrevlett.86.2427
31 https://doi.org/10.1103/physrevlett.94.057002
32 https://doi.org/10.1143/jpsj.69.1152
33 https://doi.org/10.3367/ufnr.0169.199907b.0737
34 https://doi.org/10.3367/ufnr.0172.200202a.0113
35 schema:datePublished 2006-11
36 schema:datePublishedReg 2006-11-01
37 schema:description The transport properties of two-phase composites consisting of a high-temperature superconductor and a nonsuperconducting component with magnetic ordering are analyzed. These composites are considered as a network of “superconductor-magnetoactive insulator-superconductor” weak links of the Josephson type. Substituted garnets Y3(Al1 − xFex)5O12 (x = 0, ..., 1.0) are used as a magnetoactive component. The composites under investigation contain 92.5 vol % Y3/4Lu1/4Ba2Cu3O7 (the high-temperature superconductor) and 7.5 vol % Y3(Al1 − xFex)5O12 (x = 0, ..., 1.0). It is shown that an increase in the iron content in the Y3(Al1 − xFex)5O12 garnet leads to a reduction of the Josephson coupling strength: the temperature range in which the electrical resistance of the composites is equal to zero is reduced, and the critical current density at a temperature of 4.2 K decreases exponentially. For composites in which the iron content in the Y3(Al1 − xFex)5O12 garnet is higher than 0.1, the temperature dependence of the electrical resistance R(T) at temperatures below the transition point TC of high-temperature superconductor crystallites has a portion in the range Tm-TC where the resistance R(T) is independent of the transport current and the magnetic field strength. Below the temperature Tm, the dependences of the electrical resistance R(T) of the composites are nonlinear functions of the current and involve a considerable contribution from magnetoresistance. This behavior is characteristic of a network of Josephson junctions. The temperature Tm decreases with an increase in the iron content in the Y3(Al1 − xFex)5O12 garnet. The appearance of the above feature in the temperature dependences of the electrical resistance R(T) is interpreted as complete suppression of the Josephson coupling in the temperature range above Tm due to the interaction of supercurrent carrier pairs with magnetic moments of iron atoms in the dielectric barriers separating high-temperature superconductor grains.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N4541eb3603fc4bd4b03489a4696a7a0e
42 N693ec1609b094b17935e244ccac40ef7
43 sg:journal.1136591
44 schema:name Investigation of the Josephson coupling through a magnetoactive barrier (ferrimagnet, paramagnet) in Y3/4Lu1/4Ba2Cu3O7 + Y3(Al1 − xFex)5O12 composites
45 schema:pagination 2046-2055
46 schema:productId N31a4f1ed06c14574bba20c6c1c44af61
47 N648740692a5f427285f7bb0490b74ae4
48 Nfb014bccdf1743fea240aa15ee006170
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000151573
50 https://doi.org/10.1134/s1063783406110023
51 schema:sdDatePublished 2019-04-10T20:56
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nde25df3b19724759b851b46003b63221
54 schema:url http://link.springer.com/10.1134%2FS1063783406110023
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0a2027ef4ad847f299a0cc616c306e42 rdf:first sg:person.011534463731.69
59 rdf:rest N1d135ff44f5e404c94aeba9f74fab8f6
60 N1d135ff44f5e404c94aeba9f74fab8f6 rdf:first sg:person.016243620370.10
61 rdf:rest rdf:nil
62 N31a4f1ed06c14574bba20c6c1c44af61 schema:name readcube_id
63 schema:value 00b873c707069936323118900e4e2aad13cd3ebe98dd95fd73a65f003804d790
64 rdf:type schema:PropertyValue
65 N4541eb3603fc4bd4b03489a4696a7a0e schema:issueNumber 11
66 rdf:type schema:PublicationIssue
67 N59eb57a6a12149bca27726dfd23d590d rdf:first sg:person.012051026135.69
68 rdf:rest N0a2027ef4ad847f299a0cc616c306e42
69 N648740692a5f427285f7bb0490b74ae4 schema:name dimensions_id
70 schema:value pub.1000151573
71 rdf:type schema:PropertyValue
72 N693ec1609b094b17935e244ccac40ef7 schema:volumeNumber 48
73 rdf:type schema:PublicationVolume
74 Nde25df3b19724759b851b46003b63221 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Ne579c89678fb461986a144a9696531a3 rdf:first sg:person.016644574131.64
77 rdf:rest N59eb57a6a12149bca27726dfd23d590d
78 Nfb014bccdf1743fea240aa15ee006170 schema:name doi
79 schema:value 10.1134/s1063783406110023
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1136591 schema:issn 0367-3294
88 1063-7834
89 schema:name Physics of the Solid State
90 rdf:type schema:Periodical
91 sg:person.011534463731.69 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Shaĭkhutdinov
93 schema:givenName K. A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534463731.69
95 rdf:type schema:Person
96 sg:person.012051026135.69 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
97 schema:familyName Popkov
98 schema:givenName S. I.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051026135.69
100 rdf:type schema:Person
101 sg:person.016243620370.10 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
102 schema:familyName Petrov
103 schema:givenName M. I.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016243620370.10
105 rdf:type schema:Person
106 sg:person.016644574131.64 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
107 schema:familyName Balaev
108 schema:givenName D. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644574131.64
110 rdf:type schema:Person
111 sg:pub.10.1007/978-3-322-83522-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009429644
112 https://doi.org/10.1007/978-3-322-83522-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01333954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009758854
115 https://doi.org/10.1007/bf01333954
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s100510050100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004426087
118 https://doi.org/10.1007/s100510050100
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s100510170215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039023441
121 https://doi.org/10.1007/s100510170215
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/352760278x schema:sameAs https://app.dimensions.ai/details/publication/pub.1109698706
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/j.1538-7305.1964.tb00998.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051283316
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0038-1098(82)90141-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027779847
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0040-6090(80)90217-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012554119
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.physc.2003.09.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015694211
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physc.2004.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024795756
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physc.2004.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043454149
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0038-1098(98)00583-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016376219
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0304-8853(01)00386-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623854
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0304-8853(02)00864-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002932734
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0953-2048/14/9/333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017884078
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0953-2048/17/5/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006669873
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/0953-8984/11/4/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036119137
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.41.791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554334
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.48.3388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568414
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.50.12950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572724
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.62.11812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021789232
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.63.064517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060598729
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.70.144505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060611477
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.71.012507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017796488
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.71.180501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022627070
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.22.1364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060772194
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.86.2427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027624000
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.94.057002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829854
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1143/jpsj.69.1152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063118510
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3367/ufnr.0169.199907b.0737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219467
174 rdf:type schema:CreativeWork
175 https://doi.org/10.3367/ufnr.0172.200202a.0113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219826
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
178 schema:name Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, 660036, Krasnoyarsk, Russia
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...