Energy and electronic properties of non-carbon nanotubes based on silicon dioxide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

L. A. Chernozatonskiĭ, P. B. Sorokin, A. S. Fedorov

ABSTRACT

The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube. More... »

PAGES

2021-2027

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783406100337

DOI

http://dx.doi.org/10.1134/s1063783406100337

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027009123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9manuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "\u00c9manuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernozatonski\u012d", 
        "givenName": "L. A.", 
        "id": "sg:person.01065462203.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065462203.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokin", 
        "givenName": "P. B.", 
        "id": "sg:person.01232512075.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232512075.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorov", 
        "givenName": "A. S.", 
        "id": "sg:person.012646501777.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646501777.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00396-002-0786-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017870953", 
          "https://doi.org/10.1007/s00396-002-0786-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783406100337", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1430954", 
        "issn": [
          "1063-7834", 
          "1090-6460"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "non-carbon nanotubes", 
      "silicon dioxide", 
      "band gap", 
      "wide band gap", 
      "nanotubes", 
      "electronic characteristics", 
      "electronic properties", 
      "density of states", 
      "dielectric", 
      "wide range", 
      "dioxide", 
      "energy", 
      "gap", 
      "sheets", 
      "properties", 
      "different symmetries", 
      "range", 
      "density", 
      "functional formalism", 
      "characteristics", 
      "strains", 
      "density functional formalism", 
      "types", 
      "framework", 
      "symmetry", 
      "state", 
      "entire set", 
      "set", 
      "formalism", 
      "changes", 
      "longitudinal strain"
    ], 
    "name": "Energy and electronic properties of non-carbon nanotubes based on silicon dioxide", 
    "pagination": "2021-2027", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027009123"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783406100337"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783406100337", 
      "https://app.dimensions.ai/details/publication/pub.1027009123"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_417.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783406100337"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783406100337 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Ndc70306697f0480ebfa2dc24e7c668ef
6 schema:citation sg:pub.10.1007/s00396-002-0786-9
7 schema:datePublished 2006-10
8 schema:datePublishedReg 2006-10-01
9 schema:description The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N17bc364f3ee54f45a86d1191644c8de4
13 Ne2cee9b0a4c74fbc86764e4dad12e6f0
14 sg:journal.1430954
15 schema:keywords band gap
16 changes
17 characteristics
18 density
19 density functional formalism
20 density of states
21 dielectric
22 different symmetries
23 dioxide
24 electronic characteristics
25 electronic properties
26 energy
27 entire set
28 formalism
29 framework
30 functional formalism
31 gap
32 longitudinal strain
33 nanotubes
34 non-carbon nanotubes
35 properties
36 range
37 set
38 sheets
39 silicon dioxide
40 state
41 strains
42 symmetry
43 types
44 wide band gap
45 wide range
46 schema:name Energy and electronic properties of non-carbon nanotubes based on silicon dioxide
47 schema:pagination 2021-2027
48 schema:productId N137fd1f65d8043d394f7b54c80555ba4
49 Nb562f85bb5f1470198cc1a89971d3d4d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009123
51 https://doi.org/10.1134/s1063783406100337
52 schema:sdDatePublished 2022-09-02T15:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N3b3ba48d43d642e8bd786a6b1ee179ad
55 schema:url https://doi.org/10.1134/s1063783406100337
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1250a85ef24547b8a2ee239bca9d682d rdf:first sg:person.01232512075.97
60 rdf:rest N5bd149b6c4c04d2e8903aefa301b81b2
61 N137fd1f65d8043d394f7b54c80555ba4 schema:name dimensions_id
62 schema:value pub.1027009123
63 rdf:type schema:PropertyValue
64 N17bc364f3ee54f45a86d1191644c8de4 schema:volumeNumber 48
65 rdf:type schema:PublicationVolume
66 N3b3ba48d43d642e8bd786a6b1ee179ad schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N5bd149b6c4c04d2e8903aefa301b81b2 rdf:first sg:person.012646501777.06
69 rdf:rest rdf:nil
70 Nb562f85bb5f1470198cc1a89971d3d4d schema:name doi
71 schema:value 10.1134/s1063783406100337
72 rdf:type schema:PropertyValue
73 Ndc70306697f0480ebfa2dc24e7c668ef rdf:first sg:person.01065462203.01
74 rdf:rest N1250a85ef24547b8a2ee239bca9d682d
75 Ne2cee9b0a4c74fbc86764e4dad12e6f0 schema:issueNumber 10
76 rdf:type schema:PublicationIssue
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
81 schema:name Classical Physics
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
84 schema:name Condensed Matter Physics
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
87 schema:name Quantum Physics
88 rdf:type schema:DefinedTerm
89 sg:journal.1430954 schema:issn 1063-7834
90 1090-6460
91 schema:name Physics of the Solid State
92 schema:publisher Pleiades Publishing
93 rdf:type schema:Periodical
94 sg:person.01065462203.01 schema:affiliation grid-institutes:grid.4886.2
95 schema:familyName Chernozatonskiĭ
96 schema:givenName L. A.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065462203.01
98 rdf:type schema:Person
99 sg:person.01232512075.97 schema:affiliation grid-institutes:grid.415877.8
100 schema:familyName Sorokin
101 schema:givenName P. B.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232512075.97
103 rdf:type schema:Person
104 sg:person.012646501777.06 schema:affiliation grid-institutes:grid.415877.8
105 schema:familyName Fedorov
106 schema:givenName A. S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646501777.06
108 rdf:type schema:Person
109 sg:pub.10.1007/s00396-002-0786-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017870953
110 https://doi.org/10.1007/s00396-002-0786-9
111 rdf:type schema:CreativeWork
112 grid-institutes:grid.415877.8 schema:alternateName Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia
113 schema:name Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia
114 rdf:type schema:Organization
115 grid-institutes:grid.4886.2 schema:alternateName Émanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
116 schema:name Émanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...