Energy and electronic properties of non-carbon nanotubes based on silicon dioxide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

L. A. Chernozatonskiĭ, P. B. Sorokin, A. S. Fedorov

ABSTRACT

The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube. More... »

PAGES

2021-2027

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783406100337

DOI

http://dx.doi.org/10.1134/s1063783406100337

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027009123


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9manuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "\u00c9manuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernozatonski\u012d", 
        "givenName": "L. A.", 
        "id": "sg:person.01065462203.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065462203.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokin", 
        "givenName": "P. B.", 
        "id": "sg:person.01232512075.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232512075.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorov", 
        "givenName": "A. S.", 
        "id": "sg:person.012646501777.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646501777.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00396-002-0786-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017870953", 
          "https://doi.org/10.1007/s00396-002-0786-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063783406100337", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1430954", 
        "issn": [
          "1063-7834", 
          "1090-6460"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "non-carbon nanotubes", 
      "silicon dioxide", 
      "band gap", 
      "wide band gap", 
      "nanotubes", 
      "electronic characteristics", 
      "electronic properties", 
      "density of states", 
      "dielectric", 
      "wide range", 
      "dioxide", 
      "energy", 
      "gap", 
      "sheets", 
      "properties", 
      "different symmetries", 
      "range", 
      "density", 
      "functional formalism", 
      "characteristics", 
      "strains", 
      "density functional formalism", 
      "types", 
      "framework", 
      "symmetry", 
      "state", 
      "entire set", 
      "set", 
      "formalism", 
      "changes", 
      "longitudinal strain"
    ], 
    "name": "Energy and electronic properties of non-carbon nanotubes based on silicon dioxide", 
    "pagination": "2021-2027", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027009123"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783406100337"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783406100337", 
      "https://app.dimensions.ai/details/publication/pub.1027009123"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_417.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063783406100337"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783406100337'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      59 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783406100337 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N596cfe4b7c194ed79d409f98ce9ef154
6 schema:citation sg:pub.10.1007/s00396-002-0786-9
7 schema:datePublished 2006-10
8 schema:datePublishedReg 2006-10-01
9 schema:description The geometric, energy, and electronic characteristics of new non-carbon nanotubes based on silicon dioxide are investigated in the framework of the local electron density functional formalism. Nanotubes are classified according to the type of rolling-up of the SiO2 sheet. It is shown that, among the entire set of considered nanotubes with different symmetries, the (6, 0) nanotubes are energetically more favorable. The densities of states for nanotubes are calculated. It is established that all nanotubes are dielectrics with a wide band gap. The band gap varies over a wide range with a change in the longitudinal strain of the nanotube.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf N23df67bf645540c394e567b5475d235b
13 Nf9fe3db28f1e4a1ca3b9e8837d870351
14 sg:journal.1430954
15 schema:keywords band gap
16 changes
17 characteristics
18 density
19 density functional formalism
20 density of states
21 dielectric
22 different symmetries
23 dioxide
24 electronic characteristics
25 electronic properties
26 energy
27 entire set
28 formalism
29 framework
30 functional formalism
31 gap
32 longitudinal strain
33 nanotubes
34 non-carbon nanotubes
35 properties
36 range
37 set
38 sheets
39 silicon dioxide
40 state
41 strains
42 symmetry
43 types
44 wide band gap
45 wide range
46 schema:name Energy and electronic properties of non-carbon nanotubes based on silicon dioxide
47 schema:pagination 2021-2027
48 schema:productId N61df7aeb13ec47b8a1d6d7f08c19fcae
49 N9649ce4d49984d648d83f144280c0245
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027009123
51 https://doi.org/10.1134/s1063783406100337
52 schema:sdDatePublished 2022-09-02T15:50
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N6b5198a3bf1840eaaabc064e6d67726c
55 schema:url https://doi.org/10.1134/s1063783406100337
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N23df67bf645540c394e567b5475d235b schema:issueNumber 10
60 rdf:type schema:PublicationIssue
61 N596cfe4b7c194ed79d409f98ce9ef154 rdf:first sg:person.01065462203.01
62 rdf:rest N9f61ecdd4c0e4791bed99cdef81c8256
63 N5979d79c4a6e4c539e1d555f6c5ca177 rdf:first sg:person.012646501777.06
64 rdf:rest rdf:nil
65 N61df7aeb13ec47b8a1d6d7f08c19fcae schema:name doi
66 schema:value 10.1134/s1063783406100337
67 rdf:type schema:PropertyValue
68 N6b5198a3bf1840eaaabc064e6d67726c schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N9649ce4d49984d648d83f144280c0245 schema:name dimensions_id
71 schema:value pub.1027009123
72 rdf:type schema:PropertyValue
73 N9f61ecdd4c0e4791bed99cdef81c8256 rdf:first sg:person.01232512075.97
74 rdf:rest N5979d79c4a6e4c539e1d555f6c5ca177
75 Nf9fe3db28f1e4a1ca3b9e8837d870351 schema:volumeNumber 48
76 rdf:type schema:PublicationVolume
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
81 schema:name Classical Physics
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
84 schema:name Condensed Matter Physics
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
87 schema:name Quantum Physics
88 rdf:type schema:DefinedTerm
89 sg:journal.1430954 schema:issn 1063-7834
90 1090-6460
91 schema:name Physics of the Solid State
92 schema:publisher Pleiades Publishing
93 rdf:type schema:Periodical
94 sg:person.01065462203.01 schema:affiliation grid-institutes:grid.4886.2
95 schema:familyName Chernozatonskiĭ
96 schema:givenName L. A.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065462203.01
98 rdf:type schema:Person
99 sg:person.01232512075.97 schema:affiliation grid-institutes:grid.415877.8
100 schema:familyName Sorokin
101 schema:givenName P. B.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232512075.97
103 rdf:type schema:Person
104 sg:person.012646501777.06 schema:affiliation grid-institutes:grid.415877.8
105 schema:familyName Fedorov
106 schema:givenName A. S.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012646501777.06
108 rdf:type schema:Person
109 sg:pub.10.1007/s00396-002-0786-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017870953
110 https://doi.org/10.1007/s00396-002-0786-9
111 rdf:type schema:CreativeWork
112 grid-institutes:grid.415877.8 schema:alternateName Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia
113 schema:name Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 660036, Akademgorodok, Krasnoyarsk, Russia
114 rdf:type schema:Organization
115 grid-institutes:grid.4886.2 schema:alternateName Émanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
116 schema:name Émanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 119991, Moscow, Russia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...