Magnetoresistance of carbon nanomaterials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

S. V. Demishev, A. A. Pronin

ABSTRACT

This paper contains an analysis of published experimental data on the magnetoresistance in the region of Mott hopping conduction in various carbon materials whose properties are determined by nanoscale inhomogeneities. The validity of the mechanism of shrinkage of a localized state in a magnetic field and the spin polarization mechanism involving the spin-dependent contribution of hopping over doubly occupied electronic states is considered. A simple analytic model is proposed for the spin polarization mechanism. An expression for magnetoresistance in a weak magnetic field is derived within the proposed model. It is demonstrated that only a combined effect of the spin-polarization mechanism and wave function shrinkage is capable of providing an adequate description of the magnetoresistance of carbon nanomaterials. Promising areas to search for objects with high magnetoresistance among the materials of this class are discussed. More... »

PAGES

1363-1372

Journal

TITLE

Physics of the Solid State

ISSUE

7

VOLUME

48

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063783406070249

DOI

http://dx.doi.org/10.1134/s1063783406070249

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031183881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demishev", 
        "givenName": "S. V.", 
        "id": "sg:person.011152025624.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152025624.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pronin", 
        "givenName": "A. A.", 
        "id": "sg:person.01125736117.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125736117.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0921-4526(00)00668-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038733809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.6015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.6015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.17325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060570460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.5289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.5289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.16064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.16064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.51.1904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063106464"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "This paper contains an analysis of published experimental data on the magnetoresistance in the region of Mott hopping conduction in various carbon materials whose properties are determined by nanoscale inhomogeneities. The validity of the mechanism of shrinkage of a localized state in a magnetic field and the spin polarization mechanism involving the spin-dependent contribution of hopping over doubly occupied electronic states is considered. A simple analytic model is proposed for the spin polarization mechanism. An expression for magnetoresistance in a weak magnetic field is derived within the proposed model. It is demonstrated that only a combined effect of the spin-polarization mechanism and wave function shrinkage is capable of providing an adequate description of the magnetoresistance of carbon nanomaterials. Promising areas to search for objects with high magnetoresistance among the materials of this class are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063783406070249", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Magnetoresistance of carbon nanomaterials", 
    "pagination": "1363-1372", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "948ebcd677a8f04d931551eaa6c7ffd91b41419972cb414febe9703724559726"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063783406070249"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031183881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063783406070249", 
      "https://app.dimensions.ai/details/publication/pub.1031183881"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063783406070249"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063783406070249'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063783406070249'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063783406070249'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063783406070249'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063783406070249 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N336d38fedf5a4746bd8698ea6bc2b7ae
4 schema:citation https://doi.org/10.1016/s0921-4526(00)00668-2
5 https://doi.org/10.1103/physrevb.45.6015
6 https://doi.org/10.1103/physrevb.49.17325
7 https://doi.org/10.1103/physrevb.52.5289
8 https://doi.org/10.1103/physrevb.58.16064
9 https://doi.org/10.1143/jpsj.51.1904
10 schema:datePublished 2006-07
11 schema:datePublishedReg 2006-07-01
12 schema:description This paper contains an analysis of published experimental data on the magnetoresistance in the region of Mott hopping conduction in various carbon materials whose properties are determined by nanoscale inhomogeneities. The validity of the mechanism of shrinkage of a localized state in a magnetic field and the spin polarization mechanism involving the spin-dependent contribution of hopping over doubly occupied electronic states is considered. A simple analytic model is proposed for the spin polarization mechanism. An expression for magnetoresistance in a weak magnetic field is derived within the proposed model. It is demonstrated that only a combined effect of the spin-polarization mechanism and wave function shrinkage is capable of providing an adequate description of the magnetoresistance of carbon nanomaterials. Promising areas to search for objects with high magnetoresistance among the materials of this class are discussed.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N450911b5386d4c47ab45a66144daef44
17 Na8db3f15b65c462eb25cd45e136a5c94
18 sg:journal.1136591
19 schema:name Magnetoresistance of carbon nanomaterials
20 schema:pagination 1363-1372
21 schema:productId N22dd9841b5e542fd88dffcb236db44fc
22 N8b6aa29d0e4a4815a80ef6603ee04021
23 Nf3da43252611477386b248113c7916e6
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031183881
25 https://doi.org/10.1134/s1063783406070249
26 schema:sdDatePublished 2019-04-10T23:22
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Na671411d02d94237bffb464142168eef
29 schema:url http://link.springer.com/10.1134%2FS1063783406070249
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N22dd9841b5e542fd88dffcb236db44fc schema:name readcube_id
34 schema:value 948ebcd677a8f04d931551eaa6c7ffd91b41419972cb414febe9703724559726
35 rdf:type schema:PropertyValue
36 N336d38fedf5a4746bd8698ea6bc2b7ae rdf:first sg:person.011152025624.64
37 rdf:rest N83a886f2c5b04874a33dafddabe997e0
38 N450911b5386d4c47ab45a66144daef44 schema:volumeNumber 48
39 rdf:type schema:PublicationVolume
40 N83a886f2c5b04874a33dafddabe997e0 rdf:first sg:person.01125736117.00
41 rdf:rest rdf:nil
42 N8b6aa29d0e4a4815a80ef6603ee04021 schema:name doi
43 schema:value 10.1134/s1063783406070249
44 rdf:type schema:PropertyValue
45 Na671411d02d94237bffb464142168eef schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Na8db3f15b65c462eb25cd45e136a5c94 schema:issueNumber 7
48 rdf:type schema:PublicationIssue
49 Nf3da43252611477386b248113c7916e6 schema:name dimensions_id
50 schema:value pub.1031183881
51 rdf:type schema:PropertyValue
52 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
53 schema:name Engineering
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
56 schema:name Materials Engineering
57 rdf:type schema:DefinedTerm
58 sg:journal.1136591 schema:issn 0367-3294
59 1063-7834
60 schema:name Physics of the Solid State
61 rdf:type schema:Periodical
62 sg:person.011152025624.64 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
63 schema:familyName Demishev
64 schema:givenName S. V.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011152025624.64
66 rdf:type schema:Person
67 sg:person.01125736117.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
68 schema:familyName Pronin
69 schema:givenName A. A.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125736117.00
71 rdf:type schema:Person
72 https://doi.org/10.1016/s0921-4526(00)00668-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038733809
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physrevb.45.6015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561820
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrevb.49.17325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060570460
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrevb.52.5289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578373
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrevb.58.16064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589510
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1143/jpsj.51.1904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063106464
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
85 schema:name Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...